scholarly journals Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores

2012 ◽  
Vol 362 (1-2) ◽  
pp. 357-372 ◽  
Author(s):  
I. Brunner ◽  
M. R. Bakker ◽  
R. G. Björk ◽  
Y. Hirano ◽  
M. Lukac ◽  
...  
2013 ◽  
Vol 59 (3) ◽  
Author(s):  
Bohdan Konôpka ◽  
Jozef Pajtík ◽  
Miriam Maľová

AbstractFine roots (defined by a maximum diameter of 2 mm) and assimilatory organs are the compartments which rotate carbon much faster than any other tree part. We focused on quantification of fine roots in young European beech and Norway spruce trees growing under the same ecological conditions. Standing stock of fine roots was estimated by soil coring during 2009 - 2012. Fine root production was established by the in-growth bag method. Standing stock and productions of fine roots were comparable in both tree species. The quantity of fine root biomass (at a soil depth of 0 -50 cm) varied inter-annually between 6.08 and 7.41 t per ha in the beech and from 5.10 to 6.49 t per ha in the spruce stand. Annual production of fine roots (soil depth of 0 - 30 cm) was between 1.11 and 1.63 t ha-1 in beech and between 0.95 and 1.54 t.ha-1 in spruce. We found that fine root standing stock at the beginning of each growing season was related to climatic conditions in the previous year. Annual fine root production was influenced by the climatic situation of the current year. In general, a maximum standing stock of fine roots as well as a relatively slow fine root turnover is expected in young forest stands. Whereas production of fine roots prevailed over mortality in a favorable year (sufficiency of precipitations and slightly above-average temperatures in 2010), there was a reverse situation in an unfavorable year (drought episodes in 2011). We concluded that although both forest types represented contrasting turnovers of assimilatory organs (once a year and once in 5 years in beech and spruce respectively), fine root turnover rates were very similar (approx. once per four years).


1998 ◽  
Vol 28 (6) ◽  
pp. 893-902 ◽  
Author(s):  
Rose-Marie Rytter ◽  
Lars Rytter

The aim of the present study was to calculate fine-root turnover rates in stands of basket willow (Salix viminalis L.). Fine-root number was recorded in minirhizotrons in two adjacent short-rotation forest stands. Stand A was a regularly spaced plantation on clay soil. Stand B contained lysimeters, which were inserted in the soil and filled with either clay soil or washed sand. Both stands were irrigated and fertilized daily, to provide near-optimum conditions with respect to water and nutrient availability. The calculations were based on morphological studies and observations in minirhizotrons. Mean fine-root ages of growth and decay phases were calculated from third-order polynomials, and by summing up those phases and adding a short stationary phase, turnover time was obtained. Calculated fine-root turnover rates were 4.9–5.8 year–1 in the plantation and 4.8–8.1 year–1 in the lysimeters. No significant difference in turnover rates was detected between clay and sand substrates. Soil temperature had a significant effect on the decay phase, and in the calculations the data were weighted by soil temperature intervals. The importance of observing fine roots throughout the year is stressed.


2021 ◽  
Author(s):  
Xuanshuai Liu ◽  
Junwei Zhao ◽  
Junying Liu ◽  
Weihua Lu ◽  
Chunhui Ma ◽  
...  

2010 ◽  
Vol 24 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Julia B. Gaudinski ◽  
M. S. Torn ◽  
W. J. Riley ◽  
T. E. Dawson ◽  
J. D. Joslin ◽  
...  

Trees ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 363-374 ◽  
Author(s):  
Xiaona Wang ◽  
Saki Fujita ◽  
Tatsuro Nakaji ◽  
Makoto Watanabe ◽  
Fuyuki Satoh ◽  
...  

2014 ◽  
Vol 204 (4) ◽  
pp. 932-942 ◽  
Author(s):  
Bernhard Ahrens ◽  
Karna Hansson ◽  
Emily F. Solly ◽  
Marion Schrumpf

Sign in / Sign up

Export Citation Format

Share Document