Differences in ectomycorrhizal community assembly between native and exotic pines are reflected in their enzymatic functional capacities

2019 ◽  
Vol 446 (1-2) ◽  
pp. 179-193 ◽  
Author(s):  
Chen Ning ◽  
Wenhua Xiang ◽  
Gregory M. Mueller ◽  
Louise M. Egerton-Warburton ◽  
Wende Yan ◽  
...  
2005 ◽  
Vol 75 (5) ◽  
pp. 357-368 ◽  
Author(s):  
Foote ◽  
Nonnecke† ◽  
Waters ◽  
Palmer ◽  
Beitz ◽  
...  

Effects of increased protein and energy provided by an intensified milk replacer on the antigen-specific, cell-mediated immune response of the neonatal calf were examined. Calves were fed a standard (0.45 kg/day of a 20% crude protein, 20% fat milk replacer; n = 11) or intensified (1.14 kg/day of a 28% crude protein, 20% fat milk replacer; n = 11) diet from 0 to 6 weeks of age. All calves were vaccinated with Mycobacterium bovis bacillus Calmette-Guerin (BCG) at 1 week of age. The daily weight gain of intensified-diet calves (0.62 kg/day) was greater than the weight gain of standard-diet calves (0.29 kg/day). Liver, kidney, heart, thymus, and subcervical lymph nodes from intensified-diet calves were heavier than the same organs from standard-diet calves. Flow cytometric analysis of peripheral blood mononuclear cell (PBMC) populations indicated that CD4+ cells, gamma delta TCR+ cells, and monocyte percentages, although unaffected by diet during the first 5 weeks of the study, were higher in intensified-diet calves at week 6. The decline in gamma deltad TCR+ cell percentages and increase in B cell percentages with increasing age seen in all calves are characteristic of the maturing immune system of the calf. CD8+ T cell or B cell percentages were not affected by diet. In intensified-diet calves, percentages of CD4+ expressing interleukin-2 receptor increased and percentages of gamma delta TCR+ cells expressing interleukin-2 receptor decreased with time. The same populations in standard-diet calves did not change with time. Percentages of CD4+ and CD8+ T cells, and B cells expressing MHC class II antigen, were unaffected by diet or age. Although mitogen-induced interferon (IFN)-gamma and nitric oxide (NO) secretion increased with age for all calves, PBMC from intensified-diet calves produced less IFN-gamma and more NO than did cells from standard-diet calves at week 6 of the study. Antigen-induced secretion of IFN-gamma and NO also increased with age but was unaffected by diet. Antigen-elicited delayed-type hypersensitivity was unaffected by diet, suggesting increased dietary protein and energy did not alter adaptive immunity in vivo. Overall, these results suggest that feeding calves a commercially available, intensified milk replacer affects minimally the composition and functional capacities of PBMC populations. Additional research is necessary to determine whether these subtle effects influence the calf’s susceptibility to infectious disease.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2017 ◽  
Vol 79 (2) ◽  
pp. 165-175 ◽  
Author(s):  
KL Vergin ◽  
N Jhirad ◽  
J Dodge ◽  
CA Carlson ◽  
SJ Giovannoni

Sign in / Sign up

Export Citation Format

Share Document