species sorting
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 48)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Thiago Bernardi Vieira ◽  
Liriann Chrisley Da Silva ◽  
Jessica Silva ◽  
Lilian Casatti ◽  
Renato de Romero ◽  
...  

The Species-Sorting concept, one of the models developed to explain patterns in metacommunity structure, suggests that relationships between biological communities and environmental conditions is the basic means of the species selection processes. A second concept is Neutral Theory, and the idea of neutral dynamics underpinning metacommunity structure, cannot be overlooked. The third mechanism is the Mass-Effect concept, that focuses on the interaction between environmental condition and neutral effects. In the present study, we partitioned fish communities in streams between niche and neutral theory concepts, identifying the best representation of metacommunity structure, and assessed if linear and hydrographic distance were equivalent in the representation of neutral processes. The result points to the importance of species sorting mechanisms in structuring fish communities with neutral processes best represented by the linear distances. These results are important for the fish fauna conservation leading to three considerations: (i) the variation of the landscape and habitat is important for the stream fish, (ii) the natural barriers are an important landscape component to be considered, and (iii) the artificial barriers (dams and impoundments) need to be planned taking in account the catchment basin as the landscape unit.


2022 ◽  
Author(s):  
Raven L Bier ◽  
Máté Vass ◽  
Anna J Székely ◽  
Silke Langenheder

Understanding processes that determine community membership and abundance is important for many fields from theoretical community ecology to conservation. However, spatial community studies are often conducted only at a single timepoint despite the known influence of temporal variability on community assembly processes. Here we used a spatiotemporal study to determine how environmental fluctuation differences induced by mesocosm volumes (larger volumes were more stable) influence assembly processes of aquatic bacterial metacommunities along a press disturbance gradient. By combining path analysis and network approaches, we found mesocosm size categories had distinct relative influences of assembly process and environmental factors that determined spatiotemporal bacterial community composition, including dispersal and species sorting by conductivity. These processes depended on, but were not affected proportionately by, mesocosm size. Low fluctuation, large mesocosms primarily developed through the interplay of species sorting that became more important over time and transient priority effects as evidenced by more time-delayed associations. High fluctuation, small mesocosms had regular disruptions to species sorting and greater importance of ecological drift and dispersal limitation indicated by lower richness and higher taxa replacement. Together, these results emphasize that environmental fluctuations influence ecosystems over time and its impacts are modified by biotic properties intrinsic to ecosystem size.


2022 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
Jorin Hamer ◽  
Birte Matthiessen ◽  
Silvia Pulina ◽  
Giannina S. I. Hattich

Intraspecific diversity is a substantial part of biodiversity, yet little is known about its maintenance. Understanding mechanisms of intraspecific diversity shifts provides realistic detail about how phytoplankton communities evolve to new environmental conditions, a process especially important in times of climate change. Here, we aimed to identify factors that maintain genotype diversity and link the observed diversity change to measured phytoplankton morpho-functional traits Vmax and cell size of the species and genotypes. In an experimental setup, the two phytoplankton species Emiliania huxleyi and Chaetoceros affinis, each consisting of nine genotypes, were cultivated separately and together under different fluctuation and nutrient regimes. Their genotype composition was assessed after 49 and 91 days, and Shannon’s diversity index was calculated on the genotype level. We found that a higher intraspecific diversity can be maintained in the presence of a competitor, provided it has a substantial proportion to total biovolume. Both fluctuation and nutrient regime showed species-specific effects and especially structured genotype sorting of C. affinis. While we could relate species sorting with the measured traits, genotype diversity shifts could only be partly explained. The observed context dependency of genotype maintenance suggests that the evolutionary potential could be better understood, if studied in more natural settings including fluctuations and competition.


mSystems ◽  
2021 ◽  
Author(s):  
Ping Sun ◽  
Xin Huang ◽  
Ying Wang ◽  
Bangqin Huang

Microbial organisms play a crucial role in global nutrient cycling. Few studies have attempted to simultaneously investigate the community assembly of microeukaryotes and prokaryotes and their association patterns in oceanic waters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Kalenitchenko ◽  
Erwan Peru ◽  
Pierre E. Galand

AbstractPredicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Sung Kim ◽  
Seok Hyun Ahn ◽  
In Jae Jeong ◽  
Tae Kwon Lee

AbstractThe metacommunity approach provides insights into how the biological communities are assembled along the environmental variations. The current study presents the importance of water quality on the metacommunity structure of algal communities in six river-connected lakes using long-term (8 years) monitoring datasets. Elements of metacommunity structure were analyzed to evaluate whether water quality structured the metacommunity across biogeographic regions in the riverine ecosystem. The algal community in all lakes was found to exhibit Clementsian or quasi-Clementsian structure properties such as significant turnover, grouped and species sorting indicating that the communities responded to the environmental gradient. Reciprocal averaging clearly classified the lakes into three clusters according to the geographical region in river flow (upstream, midstream, and downstream). The dispersal patterns of algal genera, including Aulacoseira, Cyclotella, Stephanodiscus, and Chlamydomonas across the regions also supported the spatial-based classification results. Although conductivity, chemical oxygen demand, and biological oxygen demand were found to be important variables (loading > |0.5|) of the entire algal community assembly, water temperature was a critical factor in water quality associated with community assembly in each geographical area. These results support the notion that the structure of algal communities is strongly associated with water quality, but the relative importance of variables in structuring algal communities differed by geological regions.


2021 ◽  
Author(s):  
Maximilian Hanusch ◽  
Xie He ◽  
Victoria Ruiz-Hernandez ◽  
Robert R. Junker

Research on ecological successions and community assembly shaped our understanding of community establishment, co-existence, and diversity. Although both lines of research address the same processes such as dispersal, species sorting, and biotic interactions, they lack unifying concepts. However, recent theoretical advances proposed to integrate both research lines and thus provided hypotheses on how communities assemble over time and form complex ecological systems. This framework predicts a sequence of stochastic and niche-based processes along successional gradients. Shifts in these assembly processes are assumed to occur abruptly once abiotic and biotic factors dominate over dispersal as main driver of community assembly. Considering the multidiversity composed of five organismal groups including plants, animals, and microbes, we empirically show that stochastic dispersal-dominated community assembly is replaced by environmental filters and biotic interactions after around 60 years of succession in a glacier forefield. The niche-based character of later successional processes is further supported by a pronounced decline in multi-beta-diversity after the shift in assembly processes. Our results support recent theories and provide new insights into the emergence of multidiverse and complex ecosystems. Our study will stimulate updates of concepts of community assembly considering multiple taxa with unique and complementary ecological roles and help to bridge the gap between research on successions and community assembly.


2021 ◽  
Vol 118 (20) ◽  
pp. e2021209118
Author(s):  
Sean A. S. Anderson ◽  
Jason T. Weir

Coexisting (sympatric) pairs of closely related species are often characterized by exaggerated trait differences. This widespread pattern is consistent with adaptation for reduced similarity due to costly interactions (i.e., “character displacement”)—a classic hypothesis in evolutionary theory. But it is equally consistent with a community assembly bias in which lineages with greater trait differences are more likely to establish overlapping ranges in the first place (i.e., “species sorting”), as well as with null expectations of trait divergence through time. Few comparative analyses have explicitly modeled these alternatives, and it remains unclear whether trait divergence is a general prerequisite for sympatry or a consequence of interactions between sympatric species. Here, we develop statistical models that allow us to distinguish the signature of these processes based on patterns of trait divergence in closely related lineage pairs. We compare support for each model using a dataset of bill shape differences in 207 pairs of New World terrestrial birds representing 30 avian families. We find that character displacement models are overwhelmingly supported over species sorting and null expectations, indicating that exaggerated bill shape differences in sympatric pairs result from enhanced divergent selection in sympatry. We additionally detect a latitudinal gradient in character displacement, which appears strongest in the tropics. Our analysis implicates costly species interactions as powerful drivers of trait divergence in a major vertebrate fauna. These results help substantiate a long-standing but equivocally supported linchpin of evolutionary theory.


Sign in / Sign up

Export Citation Format

Share Document