milk replacer
Recently Published Documents


TOTAL DOCUMENTS

663
(FIVE YEARS 171)

H-INDEX

35
(FIVE YEARS 4)

Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Dong Wang ◽  
Zhendong You ◽  
Yuanyi Du ◽  
Duo Zheng ◽  
Haotian Jia ◽  
...  

This study aimed to evaluate the effects of the administration of sodium humate (NaH) on the growth performance, diarrhea incidence, and fecal microflora of pre-weaned Holstein calves. In a 53-day experiment, forty healthy newborn female calves were randomly allocated to the following four treatment groups: (1) control (basal diet); (2) 1-gram NaH (basal diet extra orally supplemented with 1 g of NaH dissolved in 100 mL of milk or milk replacer daily); (3) 3-gram NaH (basal diet extra orally supplemented with 3 g of NaH dissolved in 100 mL of milk or milk replacer daily); and (4) 5-gram NaH (basal diet extra orally supplemented with 5 g of NaH dissolved in 100 mL of milk or milk replacer daily). NaH was mixed with milk (d 2–20) or milk replacer (d 21–53). Calves in the 5-gram NaH group had a higher ADG during d 1 to 21 and d 21 to 53 than the other groups did (p < 0.05). Fecal scores and diarrheal incidence were significantly lower in the 3-gram and 5-gram NaH groups than the 1-gram NaH and control groups during d 1 to 20 (p < 0.05). The serum IgA, IgG and IL-4 concentrations, and T-SOD and T-AOC activities were higher, and the serum IL-6, TNF-α, D-lactic acid, and MDA concentrations were lower in the 5-gram NaH group than the control group (p < 0.05). Furthermore, NaH supplementation increased the abundances of Bifidobacterium and Lactobacillus but decreased the abundance of Escherichia coli in feces (p < 0.05). These encouraging findings indicated that supplementation with 5 g of NaH effectively improved the immune status, antioxidant capacity, and intestinal beneficial bacteria, and further improved the growth performance and reduced the diarrhea incidence of the pre-weaned dairy calves.


2022 ◽  
Vol 12 ◽  
Author(s):  
Chao Yang ◽  
Tianxi Zhang ◽  
Quanhua Tian ◽  
Yan Cheng ◽  
Kefyalew Gebeyew ◽  
...  

Successful establishment of passive immunity (PIT) and regulation of intestinal microbiota are crucial for ruminants to maintain body health and reduce the risk of disease during the neonatal period. Thus, the objective of this study was to investigate the effects of mannan oligosaccharide (MOS) supplementation on passive transfer of immunoglobulin G (IgG), serum inflammatory cytokines and antioxidant levels as well as bacteria composition in the ileal digesta. A total of 14 healthy neonatal Ganxi black goats with similar birth weight (BW: 2.35 ± 0.55 kg) were selected and allocated into two groups, only fed colostrum and milk replacer (CON, n = 7) and supplemented MOS (0.06% of birth BW) in the colostrum and milk replacer (MOS, n = 7). The results indicated that MOS supplementation significantly reduced (p &lt; 0.05) serum IgG level at 3 and 6 h after colostrum feeding. Serum GLP-1 level of goats in the MOS group was significantly lower (p = 0.001) than that in the CON group. Goats in the MOS group had higher serum CAT and lower MDA level than those in the CON group (p &lt; 0.05). Serum anti-inflammatory cytokine level of interleukin 4 (IL-4) was increased (p &lt; 0.05), while pro-inflammatory cytokine IL-6 level was reduced (p &lt; 0.05) in the MOS group when compared with the CON group. In addition, MOS supplementation remarkably increased (p &lt; 0.05) the level of secretory IgA (sIgA) in the ileal digesta. Principal coordinate analysis of 16S rRNA sequence based on Brinary jaccard, Bray curtis, and weighted UniFrac distance of ileal microbiota showed a distinct microbial differentiation between the CON and MOS groups (p &lt; 0.05). The relative abundance of Firmicutes in the MOS group was higher than that in the CON group, while the abundance of Verrucomicrobia was lower in the MOS group than that in the CON group at the phylum level (p &lt; 0.05). The relative abundance of Proteobacteria tended to decrease (p = 0.078) in the MOS group at the phylum level. The results of LEfSe analysis showed that MOS group was characterized by a higher relative abundance of Lactobacillus, while the CON group was represented by a higher relative abundance of Akkermansia and Ruminiclostridium_5. Our findings demonstrated that MOS supplementation during the neonatal period increases antioxidant capacity and reduces the inflammatory response, and promotes IgA secretion and Lactobacillus colonization in the ileum. Thus, MOS induced positive effects are more pronounced in neonatal goats that might be an effective approach to maintain intestinal health and improve the surviving rate of neonatal ruminants.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 199
Author(s):  
Victoria C. Daniels ◽  
Marcia H. Monaco ◽  
Mei Wang ◽  
Johanna Hirvonen ◽  
Henrik Max Jensen ◽  
...  

Human milk is rich in oligosaccharides that influence intestinal development and serve as prebiotics for the infant gut microbiota. Probiotics and 2’-fucosyllactose (2’-FL) added individually to infant formula have been shown to influence infant development, but less is known about the effects of their synbiotic administration. Herein, the impact of formula supplementation with 2’-fucosyllactose (2’-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26), or 2’-FL + Bi-26 on weight gain, organ weights, and intestinal development in piglets was investigated. Two-day-old piglets (n = 53) were randomized in a 2 × 2 design to be fed a commercial milk replacer ad libitum without (CON) or with 1.0 g/L 2’-FL. Piglets in each diet were further randomized to receive either glycerol stock alone or Bi-26 (109 CFU) orally once daily. Body weights and food intake were monitored from postnatal day (PND) 2 to 33/34. On PND 34/35, animals were euthanized and intestine, liver and brain weights were assessed. Intestinal samples were collected for morphological analyses and measurement of disaccharidase activity. Dry matter of cecum and colon contents and Bifidobacterium longum subsp. infantis abundance by RT-PCR were also measured. All diets were well tolerated, and formula intake did not differ among the treatment groups. Daily body weights were affected by 2’-FL, Bi-26, and day, but no interaction was observed. There was a trend (p = 0.075) for greater total body weight gain in CON versus all other groups. Jejunal and ascending colon histomorphology were unaffected by treatment; however, there were main effects of 2’-FL to increase (p = 0.040) and Bi-26 to decrease (p = 0.001) ileal crypt depth. The addition of 2’-FL and/or Bi-26 to milk replacer supported piglet growth with no detrimental effects on body and organ weights, or intestinal structure and function.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Kevin Van Tichelen ◽  
Sara Prims ◽  
Miriam Ayuso ◽  
Céline Van Kerschaver ◽  
Mario Vandaele ◽  
...  

The introduction of hyperprolific sows has resulted in more low birth weight (LBW) piglets, accompanied by higher mortality. A possible strategy to enhance the resilience and survival of LBW piglets is oral supplementation (drenching) of bioactive substances. This study evaluated the supplementation of bovine colostrum, short-chain fructo-oligosaccharides (scFOS) or quercetin that were dissolved separately in a milk replacer. The study was divided into two sub-experiments. First, the milk replacer was compared with a sham drenched group. Secondly, each dissolved compound was compared with the milk replacer. The LBW piglets, defined as weighing between (mean litter birth weight −1*SD) and (mean litter birth weight −2.5*SD), were randomly allocated to the different treatments and drenched once a day for seven days. On day 1, 3, 9, 24 and 38, piglets were weighed and scored for skin lesions. Blood samples were collected on day 9 and 38 and analyzed to determine glucose, non-esterified fatty acids, urea, immunoglobulin G, insulin-like growth factor 1, and a standard blood panel test. There was no difference between sham drenched piglets and piglets that were drenched with milk replacer regarding any of the parameters. No effect was observed between the milk replacer group and any of the bioactive compounds either, except a higher mortality within the scFOS group. In conclusion, this study showed that drenching the evaluated bioactive compounds, in the used dosages, did not improve LBW piglets’ resilience or survival and more research is required to determine the effect of scFOS on small piglets.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3606
Author(s):  
Hitihamy M. G. P. Herath ◽  
Sarah J. Pain ◽  
Paul R. Kenyon ◽  
Hugh T. Blair ◽  
Patrick C. H. Morel

The objective of this study was to examine the effect of three different rearing regimens on rumen development in lambs reared artificially. Romney ram lambs were randomly allocated to one of three treatments: commercial milk replacer fed to 57 d of age and high fibre concentrate pellets (HFP57); commercial milk replacer, high fibre concentrate pellets, and early weaning from milk replacer at 42 d of age (HFP42); high protein milk replacer from 2–16 d of age followed by commercial milk replacer, low fibre concentrate pellets, and early weaning from milk replacer at 42 d of age (LFP42). Lambs were slaughtered at 57 d of age. Volatile fatty acid content in rumen fluid at slaughter was analysed and rumen tissue samples were collected for histological examination. The rumen n-butyric content was greater (p < 0.05) in both LFP42 and HFP42 treatment lambs compared to HFP57 lambs. The n-valeric content was greater (p < 0.05) in LFP42 lambs compared to both HFP57 and HFP42 treatment lambs. Thickness of the rumen dorsal wall determined by ultrasound scanning at 49 d was greater (p < 0.05) in both HFP42 and LFP42 lambs compared to HFP57 lambs. There was an interaction (p < 0.05) between treatment and site of rumen tissue sampling on papillae width, density, and rumen muscular layer thickness. Collectively, early weaning and the provision of a low fibre pellet leads to improved rumen function and physical development.


2021 ◽  
Vol 8 ◽  
Author(s):  
Han Wang ◽  
Samy A. Elsaadawy ◽  
Zhaohai Wu ◽  
Dengpan P. Bu

The objective of this study was to evaluate the effect of supplying ruminally-protected lysine (RPL), methionine (RPM), or the two in combination (RPML) to transition dairy cows on the immunity and performance of their offspring. Eighty heifer calves (n = 20 calves per group) were assigned to four treatments based on their dam diet; basal diet (CON), a basal diet with lysine [RPL, 0.33% of dry matter (DM)], a basal diet with methionine (RPM, 0.16% DM), or with the combination (RPML). Calves were fed colostrum from their dams within 2 h of birth. Calves were then fed milk only (d 2–22), a combination of milk and milk replacer (d 23–25), and milk replacer (d 25–60). Starter feed was fed to the calves twice daily after liquid feeding. Calves blood samples were collected after calving on 0, 12, 24, and 48 h and 5 and 7 d after birth. Data were analyzed by SAS software v9.4. Providing ruminally-protected amino acids (RPAA) to transition cows improved colostrum quality compared to the CON (Brix; P &lt; 0.01). Serum total protein concentrations were higher in calves from supplemented cows than in calves from unsupplemented cows (P &lt; 0.01). Calves born to dams in the RPM, RPL, and RPML groups had higher plasma immunoglobulin G (IgG) concentrations 0, 12, 24, and 48 h and 7 d after birth than those born to dams in the CON group (P &lt; 0.05). The percentage of calves with adequate passive immunity transfer was increased with RPM and RPL or the two in combination (P &lt; 0.01). However, there was no difference in the percentage of calves with adequate passive immunity transfer between the RPM and RPL groups (P = 0.21). Calves from cows that receive supplemental RPAA have a greater average daily gain (ADG) than those born to cows in the CON group (P &lt; 0.01). These results indicate that maternal supplementation with RPM or RPL or the two in combination during the periparturient period could be an alternative strategy to improve the performance of calves, especially in accelerated growth programs in calves.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3370
Author(s):  
Hitihamy M. G. P. Herath ◽  
Sarah J. Pain ◽  
Paul R. Kenyon ◽  
Hugh T. Blair ◽  
Patrick C. H. Morel

This study was designed to investigate the influence of pellet fibre level, milk replacer composition and age at weaning on growth and body composition of lambs reared artificially. Romney ram lambs were randomly allocated to one of three rearing treatments; HFP57: commercial milk replacer to 57 days of age, and high fibre concentrate pellets; HFP42: commercial milk replacer with early weaning at 42 days of age, and high fibre concentrate pellets; LFP42: high protein milk replacer from 2–16 days of age followed by commercial milk replacer with early weaning at 42 days of age, and low fibre concentrate pellets. Lambs were slaughtered at 57 days of age. Overall average daily liveweight gain of lambs did not differ (p > 0.05) between treatments. Dressing out percentage, carcass weight, empty small intestine and omental fat were higher (p < 0.05) in HFP57 than in both HFP42 and LFP42 lambs. HFP42 and LFP42 lambs had heavier (p < 0.05) empty rumen weights. Whole body protein content was higher (p < 0.05) in HFP42 lambs compared to both HFP57 and LFP42 lambs. Fat content and daily fat deposition were greater (p < 0.05) in HFP57 lambs than HFP42 and LFP42 lambs. Weaning lambs at 42 days of age with provision of either low or high fibre concentrate pellets, resulted in similar growth rates, reduced whole body fat deposition and was a more cost-effective rearing regimen.


Author(s):  
B Christensen ◽  
L Huber

Abstract Fifty-six litters from first-parity sows standardized to 12 piglets were used to determine the effects of creep feed composition and form on pre- and post-weaning pig growth performance and the utilization of low-complexity nursery diets. At five days of age, litters (initial BW 2.31±0.61 kg) were assigned to one of four creep feeding regimens (n=14): [1] pelleted commercial creep feed (COM), [2] liquid milk replacer (LMR), [3] pelleted milk replacer (PMR), or [4] no creep feed (NO); creep feeds contained 1.0 % brilliant blue as a fecal marker. Individual piglet BW and fecal swabs were collected every 3±1 days during the creep-feeding period. The latter was to identify piglets that regularly consumed creep feed via the visual appearance of blue dye in the feces. At weaning (21±2 days of age), six pigs per litter with median BW that consumed creep feed were placed on either a HIGH- (contained highly digestible animal proteins) or LOW- (contained corn and soybean meal as the main protein sources) complexity nursery diet (n=7) in a three-phase feeding program over 39 days. On day 8, two pigs per pen were sacrificed to collect organ weights and digesta. The LMR disappeared at the greatest rate (average 37.7 g/pig/d; DM-basis) versus COM and PMR (10.6 and 10.3 ± 1.5 g/pig/d, respectively; P &lt; 0.001). Litters that received LMR had the greatest proportion of pigs with blue fecal swabs throughout the creep feeding period (85.0 vs. 54.9 and 63.0 ± 0.4% for COM and PMR, respectively; P &lt; 0.05) and LMR piglets had greater BW at weaning versus all other treatments (6.32 vs. 6.02, 5.92, and 5.67 ± 0.14 kg, for LMR, COM, NO, and PMR, respectively; P &lt; 0.001). Overall, pigs given LOW (versus HIGH) diets in the nursery period had reduced ADG (25.1 vs. 27.7 ± 0.4 g/kg BW; P &lt; 0.001), G:F (0.75 vs. 0.81 ± 0.02; P &lt; 0.001), and exit BW (21.2 vs. 24.4 ± 0.6 kg; P &lt; 0.001); no carryover effects of creep feeding program were observed. Creep feed regimen had limited effects on nutrient digestibility of nursery diets but the apparent ileal digestibility of organic matter tended to be less at 28 days of age for pigs that received the LOW nursery diet (64.2 vs. 68.8 ± 2.5%; P = 0.076). Providing supplemental nutrition during the suckling period via LMR improved piglet BW at weaning, which did not correspond to improved post-weaning growth performance, regardless of nursery diet complexity.


Author(s):  
Ruth M. Orellana Rivas ◽  
Thalyane Rodrigues ◽  
Jordana da Silveira E. Sousa ◽  
Victor H. L. R. Melo ◽  
Jing Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document