scholarly journals Lumbricus terrestris regulating the ecosystem service/disservice balance in maize (Zea mays) cultivation

2021 ◽  
Author(s):  
Christine van Capelle ◽  
Friederike Meyer-Wolfarth ◽  
Torsten Meiners ◽  
Stefan Schrader

Abstract Background and aim Plant pathogenic and mycotoxin-producing Fusarium species are globally widespread and lead to large annual yield losses in maize production (ecosystem disservice). Systems with reduced tillage and mulching are particularly under threat. In the present study, the bioregulatory performance (ecosystem service) of the common earthworm species Lumbricus terrestris was analysed regarding the suppression of three economically relevant Fusarium species, and the reduction of their mycotoxins in the maize mulch layer, taking into account the size of maize residues. Methods A mesocosm field experiment was conducted in a reduced tillage long-term field trial on loam soil. Artificially Fusarium-infected maize residues of two size classes were used as a mulch layer. Impacts of the earthworm species on DNA amounts of Fusarium graminearum, F. culmorum, and F. verticillioides and concentrations of the mycotoxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), and zearalenone (ZEN) were analysed. Results The results reflect that Fusarium regulation by L. terrestris was species-specific and covered the whole spectrum from suppression (F. graminearum) to slight promotion (F. verticillioides). Regarding the mycotoxins, a significant acceleration of the degradation of all three toxins was detected. Fine chopping of the chaff (< 2 cm) did not significantly alter the earthworms’ regulatory capacity. Conclusion While L. terrestris can shift the ecosystem service/disservice balance in both directions with respect to Fusarium regulation, it shifts it towards ecosystem services with respect to mycotoxin degradation. In synergy with adapted agricultural management, this natural bottom-up effect can help to keep soils healthy for sustainable production in the long run.

2003 ◽  
Vol 55 (1-2) ◽  
pp. 55-58 ◽  
Author(s):  
Mirjana Stojanovic ◽  
Spasenija Karaman

This paper contains the results of qualitative analysis of Lumbricidae (Oligochaeta) in Montenegro, during the period 1997-2003. The research has included natural and cultivated biotopes. The presence of 15 species was established and the habitats, localities and their zoogeographical position are given. In Montenegro we found four species for the first time Dendrobaena jastrebensis, D. vejdovskyi, Octodrilus bretcheri and Lumbricus terrestris. The complete list of earthworm species in Montenegro includes 45 taxa. With respects to the zoogeographic situation of the earthworms in Montenegro, the largest number belongs to endemic (10) and European (10) species. But 8 taxa are south-European, 9 Holarctic, 7 cosmopolitan, and 1 Palearctic. The degree of endemism of the earthworm fauna of Montenegro is quite high, exceeding 22.2%.


2020 ◽  
Author(s):  
Christine van Capelle ◽  
Friederike Meyer-Wolfarth ◽  
Torsten Meiners ◽  
Mignon Sandor ◽  
Stefan Schrader

&lt;p&gt;A sustainable agricultural management can contribute to promoting soil biodiversity performance, thereby preserving soil functions and ensuring the provision of soil biota-induced ecosystem services. In order to make the best possible use of these services for the benefit of agricultural production, a better understanding of interlinkages between management measures, ecosystem service/disservice balance and soil self-regulation potential is essential. In this context, it is well known that the reduction of soil tillage intensity combined with mulching techniques, on the one hand, promote the survival, development and spread of plant pathogenic mycotoxin-producing soil-borne fungi, but, on the other hand, enhance the diversity of antagonistic mycotoxin-degrading fungivorous soil animals. However, up to now it is still unclear, which ecosystem service/disservice balance results from both pathways and which self-regulation mechanisms are involved.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;To analyse and assess the bioregulation potential of fungivorous soil faunal key species (earthworms: Lumbricus terrestris, collembolans: Proisotoma minuta, enchytraeids: Enchytraeus crypticus and E. christenseni) on economically relevant plant pathogenic species of the fungal genus Fusarium (F. graminearum, F. culmorum, F. verticillioides) and its mycotoxins (deoxynivalenol (DON), zearalenon (ZEN), 3-acetyl-deoxynivalenol (3AcDON) and fumonisin B1 (FB1)) in maize residues, field and laboratory experiments were performed as part of the EU BiodivERsA project SoilMan. Based on these studies the following hypotheses were tested: (1) soil faunal key organisms supress Fusarium species and reduce their mycotoxins in maize residues, (2) the bioregulation potential depends on substrate size and soil texture (3) interactions between fungivorous key species affect their bioregulation potential, (4) leaching of mycotoxins represents a potential risk for arable soils.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The results reflect that soil faunal key species regulate amounts of F. graminearum and F. culmorum in maize residues depending on substrate size and soil texture, but did not affect amounts of F. verticillioides. Fungivorous soil animals significantly accelerate degradation rates of Fusarium mycotoxins by up to 300%, depending on soil faunal species, respective mycotoxin and soil texture. In particular, primary decomposers within the earthworm community (L. terrestris) are pivotal for the bioregulation of Fusarium species and their mycotoxins in the mulch layer. The bioregulation potential of the mesofauna (collembolans and enchytraeids) strongly depends on soil faunal interactions. The findings further indicate that the mycotoxins DON and ZEN leach from infected maize residues.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The present studies contribute to improve understanding of the complex interrelations between arable management and ecosystem service/disservice balance in agroecosystems.&lt;/p&gt;


1999 ◽  
Vol 79 (3) ◽  
pp. 473-480 ◽  
Author(s):  
S. D. Wanniarachchi ◽  
R. P. Voroney ◽  
T. J. Vyn ◽  
R. P. Beyaert ◽  
A. F. MacKenzie

Agricultural management practices affect the dynamics of soil organic matter (SOM) by influencing the amount of plant residues returned to the soil and rate of residue and SOM decomposition. Total organic C and δ13C of soil were measured in two field experiments involving corn cropping to determine the effect of tillage practices on SOM dynamics. Minimum tillage (MT) and no tillage (NT) had no significant impact on the soil C compared with conventional tillage (CT) in the 0- to 50-cm soil depth sampled at both sites. Continuous corn under MT and CT for 29 yr in a silt loam soil sequestered 61–65 g m−2 yr−1 of corn-derived C (C4-C), and it accounted for 25–26% of the total C in the 0- to 50-cm depth. In a sandy loam soil cropped to corn for 6 yr, SOM contained 10 and 8.4% C4-C under CT and NT, respectively. Reduced tillage practices altered the distribution of C4-C in soil, causing the surface (0–5 cm) soil of reduced tillage (MT and NT) plots to have higher amounts of C4-C compared to CT. Tillage practices did not affect the turnover of C3-C in soil. Key words: Soil organic matter, 13C natural abundance, tillage practices


2018 ◽  
pp. 59-63
Author(s):  
Tibor Horváth ◽  
Anikó Nyéki ◽  
Miklós Neményi

Agricultural production is a crucial area, perhaps the most important for humanity. This is the only area which cannot be avoided. Therefore, it is of utmost importance to know how sustainable the system is in the long run as regards energy consumption. We have chosen the maize production sector as the main focus of this study. This crop is especially important all over the world, therefore; it requires significant input also in terms of energy. Currently, the system of maize production (as with the others) operates as an open energy system. This study aims to examine how much of the agricultural land’s energy demand could be met with the help of the byproducts of 1 hectare of agricultural land - operating as a closed system, using only the remaining maize stalk and cob byproducts for energy - under the conditions of Hungarian maize production. Energy demand is largely determined by the land’s fertilizer requirement, followed by the input factor of the energy demand of the machinery during earthwork and transport. The study assumes that the energy from the byproducts of maize production will be used exclusively with biogas technology. This can even be implemented on a county level. The final question is whether the maize production system will be able to sustain itself solely by using its own byproducts.


1988 ◽  
Vol 25 (3) ◽  
pp. 847 ◽  
Author(s):  
W. E. Hamilton ◽  
D. L. Dindal ◽  
C. M. Parkinson ◽  
M. J. Mitchell

2010 ◽  
Vol 76 (17) ◽  
pp. 5934-5946 ◽  
Author(s):  
Ana Beloqui ◽  
Taras Y. Nechitaylo ◽  
Nieves López-Cortés ◽  
Azam Ghazi ◽  
María-Eugenia Guazzaroni ◽  
...  

ABSTRACT The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-β-glucanases, β-glucosidases, β-cellobiohydrolases, β-galactosidase, and β-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of β-galactosidases/α-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales).


Sign in / Sign up

Export Citation Format

Share Document