Effect of Genetic Diversity on the Distribution of Endemic Species of the Genus Silene (Caryophyllaceae) in Saint Katherine Protectorate, Sinai, Egypt

Author(s):  
Sami H. Rabei ◽  
Ibrahim A. El Gamal ◽  
Reham M. Nada
BioTech ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 23
Author(s):  
Oxana Khapilina ◽  
Ainur Turzhanova ◽  
Alevtina Danilova ◽  
Asem Tumenbayeva ◽  
Vladislav Shevtsov ◽  
...  

Endemic species are especially vulnerable to biodiversity loss caused by isolation or habitat specificity, small population size, and anthropogenic factors. Endemic species biodiversity analysis has a critically important global value for the development of conservation strategies. The rare onion Allium ledebourianum is a narrow-lined endemic species, with natural populations located in the extreme climatic conditions of the Kazakh Altai. A. ledebourianum populations are decreasing everywhere due to anthropogenic impact, and therefore, this species requires preservation and protection. Conservation of this rare species is associated with monitoring studies to investigate the genetic diversity of natural populations. Fundamental components of eukaryote genome include multiple classes of interspersed repeats. Various PCR-based DNA fingerprinting methods are used to detect chromosomal changes related to recombination processes of these interspersed elements. These methods are based on interspersed repeat sequences and are an effective approach for assessing the biological diversity of plants and their variability. We applied DNA profiling approaches based on conservative sequences of interspersed repeats to assess the genetic diversity of natural A. ledebourianum populations located in the territory of Kazakhstan Altai. The analysis of natural A. ledebourianum populations, carried out using the DNA profiling approach, allowed the effective differentiation of the populations and assessment of their genetic diversity. We used conservative sequences of tRNA primer binding sites (PBS) of the long-terminal repeat (LTR) retrotransposons as PCR primers. Amplification using the three most effective PBS primers generated 628 PCR amplicons, with an average of 209 amplicons. The average polymorphism level varied from 34% to 40% for all studied samples. Resolution analysis of the PBS primers showed all of them to have high or medium polymorphism levels, which varied from 0.763 to 0.965. Results of the molecular analysis of variance showed that the general biodiversity of A. ledebourianum populations is due to interpopulation (67%) and intrapopulation (33%) differences. The revealed genetic diversity was higher in the most distant population of A. ledebourianum LD64, located on the Sarymsakty ridge of Southern Altai. This is the first genetic diversity study of the endemic species A. ledebourianum using DNA profiling approaches. This work allowed us to collect new genetic data on the structure of A. ledebourianum populations in the Altai for subsequent development of preservation strategies to enhance the reproduction of this relict species. The results will be useful for the conservation and exploitation of this species, serving as the basis for further studies of its evolution and ecology.


2021 ◽  
Author(s):  
Jiyeong Shin ◽  
Jongwoo Jung

Abstract Background: Mosquitoes of the genus Aedes are important invasive species contributing to the spread of chikungunya, dengue fever, yellow fever, Zika virus, and other dangerous vector-borne diseases. Aedes albopictus is native to southeast Asia with rapid expansion due to human activity, showing a wide distribution in the Korean peninsula. Aedes flavopictus is considered to be native to East Asia with a broad distribution in the region, including in the Korean peninsula. Gaining a better understanding of the genetic diversity of these species is critical for establishing strategies for disease prevention and vector control. Methods: We obtained DNA from 148 specimens of Ae. albopictus and 166 specimens of Ae. flavopictus in Korea, and amplified two mitochondrial genes (COI and ND5) to compare the genetic diversity and structure of the two species.Results: We obtained a 658-bp sequence of COI and a 423-bp sequence of ND5 from the two mosquito species. We found low diversity and an insignificant population genetic structure in Ae. albopictus, and high diversity and an insignificant structure in Ae. flavopictus for these two mitochondrial genes. Ae. albopictus had less haplotypes with respect to the number of individuals, and a slight mismatch distribution was confirmed. By contrast, Ae. flavopictus had a large number of haplotypes compared with the number of individuals, and a large unimodal-type mismatch distribution was confirmed. Although the genetic structure of both species was insignificant, Ae. flavopictus exhibited higher genetic diversity than Ae. albopictus.Conclusions: Ae. albopictus appears to be an introduced species, whereas Ae. flavopictus is an endemic species to the Korean peninsula, and the difference in genetic diversity between the two species is related to their adaptability and introduction history. As an endemic species, Ae. flavopictus is likely to have a larger population size than expected. Further studies on the genetic structure and diversity of these two mosquito species will provide useful data for vector control.


2020 ◽  
Vol 47 (12) ◽  
pp. 9345-9352
Author(s):  
Fatemeh Kazemeini ◽  
Younes Asri ◽  
Golaleh Mostafavi ◽  
Ramezan Kalvandi ◽  
Iraj Mehregan

2019 ◽  
Vol 305 (8) ◽  
pp. 675-686
Author(s):  
Camila L. Chaves ◽  
Eduardo A. Ruas ◽  
Claudete F. Ruas ◽  
Estrella Urtubey ◽  
Paulo M. Ruas

Author(s):  
Luiz Sergio Costa Duarte Filho ◽  
Danielson Ramos Ribeiro ◽  
Allison Vieira da Silva

The species Myrciaria floridunda O. Berg, popularly known as cambuí, belongs to the Myrtaceae family. Cambui is a native, non-endemic species that occur in diverse environments in Central America and South America. They are slow-growing plants with a shrub or sub-shrub habit. The fruits, the product of interest of the species, are small, spherical berries orange or red in colorturning to wine colorwhen they are ripe. The exploitation of the species is still mostly extractivist, carried out by traditional local families who, in times of fruiting of the species, leverage their income by selling fruits at fairs. The fruits can be eaten fresh, in the form of jellies, liquor or wine. To study the genetic diversity of the species using ISSR-type molecular markers, it is necessary to first isolate DNA in sufficient quality and quantity. Here, leaves for DNA extraction were collected from the active germplasm bank of the Federal University of Alagoas, Brazil. The DNA of the species was extracted using CTAB detergent methodology with modifications adapted to the species. Twelve ISSR primers were tested on DNA from two cambui genotypes. Of the twelve primers, eight were selected due to their polymorphism index above 50%, namely: UFAL-2, UFAL-3, UFAL-5, UFAL-6, UFAL-7, UFAL-8, UFAL-9 and UFAL-10.


2013 ◽  
Vol 26 (5) ◽  
pp. 619-627
Author(s):  
Sung-Won Son ◽  
Kyoung Su Choi ◽  
Kyu Tae Park ◽  
Eun-Hye Kim ◽  
Seon Joo Park

AoB Plants ◽  
2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Mónica Medrano ◽  
Conchita Alonso ◽  
Pilar Bazaga ◽  
Esmeralda López ◽  
Carlos M Herrera

Abstract Genetic diversity defines the evolutionary potential of a species, yet mounting evidence suggests that epigenetic diversity could also contribute to adaptation. Elucidating the complex interplay between genetic and epigenetic variation in wild populations remains a challenge for evolutionary biologists, and the intriguing possibility that epigenetic diversity could compensate for the loss of genetic diversity is one aspect that remains basically unexplored in wild plants. This hypothesis is addressed in this paper by comparing the extent and patterns of genetic and epigenetic diversity of phylogenetically closely related but ecologically disparate species. Seven pairs of congeneric species from Cazorla mountains in south-eastern Spain were studied, each pair consisting of one endemic, restricted-range species associated to stressful environments, and one widespread species occupying more favourable habitats. The prediction was tested that endemic species should have lower genetic diversity due to population fragmentation, and higher epigenetic diversity induced by environmental stress, than their widespread congeners. Genetic (DNA sequence variants) and epigenetic (DNA cytosine methylation variants) diversities and their possible co-variation were assessed in three populations of each focal species using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP). All species and populations exhibited moderate to high levels of genetic polymorphism irrespective of their ecological characteristics. Epigenetic diversity was greater than genetic diversity in all cases. Only in endemic species were the two variables positively related, but the difference between epigenetic and genetic diversity was greater at populations with low genetic polymorphism. Results revealed that the relationship between genetic and epigenetic diversity can be more complex than envisaged by the simple hypothesis addressed in this study, and highlight the need of additional research on the actual role of epigenetic variation as a source of phenotypic diversity before a realistic understanding of the evolutionary relevance of epigenetic phenomena in plant adaptation can be achieved.


Biologia ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 441-451
Author(s):  
Fatemeh Kazemeini ◽  
Younes Asri ◽  
Golaleh Mostafavi ◽  
Ramezan Kalvandi ◽  
Iraj Mehregan

2014 ◽  
Vol 62 (2) ◽  
pp. 156-162 ◽  
Author(s):  
Satoru N. Chiba ◽  
Ryosuke Kakehashi ◽  
Kouichi Shibukawa ◽  
Takahiko Mukai ◽  
Yasuyuki Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document