bHLH Transcription Factors Undergo Alternative Splicing During Cold Acclimation in a Eucalyptus hybrid

Author(s):  
Héctor Apablaza ◽  
Myriam Solís ◽  
Daniel Conejera ◽  
Alexis Fonseca ◽  
Jorge Cid ◽  
...  
2007 ◽  
Vol 47 (supplement) ◽  
pp. S54
Author(s):  
Koji HASEGAWA ◽  
Tatsushi GOTO ◽  
Daisuke KITANO ◽  
Mari KOTOURA ◽  
Fumio TOKUNAGA ◽  
...  

2017 ◽  
Vol 10 (11) ◽  
pp. 1461-1464 ◽  
Author(s):  
Houping Wang ◽  
Yang Li ◽  
Jinjing Pan ◽  
Dengji Lou ◽  
Yanru Hu ◽  
...  

Biology Open ◽  
2021 ◽  
Author(s):  
Konstantina Filippopoulou ◽  
Carole Couillault ◽  
Vincent Bertrand

Neural bHLH transcription factors play a key role in the early steps of neuronal specification in many animals. We have previously observed that the Achaete-Scute HLH-3, the Olig HLH-16 and their binding partner the E protein HLH-2 activate the terminal differentiation program of a specific class of cholinergic neurons, AIY, in C. elegans. Here we identify a role for a fourth bHLH, the Neurogenin NGN-1, in this process, raising the question of why so many neural bHLHs are required for a single neuronal specification event. Using quantitative imaging we show that the combined action of different bHLHs is needed to activate the correct level of expression of the terminal selector transcription factors TTX-3 and CEH-10 that subsequently initiate and maintain the expression of a large battery of terminal differentiation genes. Surprisingly, the different bHLHs have an antagonistic effect on another target, the proapoptotic BH3-only factor EGL-1, normally not expressed in AIY and otherwise detrimental for its specification. We propose that the use of multiple neural bHLHs allows robust neuronal specification while, at the same time, preventing spurious activation of deleterious genes.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Satya Srirama Karthik Divvela ◽  
Darius Saberi ◽  
Beate Brand-Saberi

Atoh8 belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) proteins. bHLH proteins have been identified in a wide range of organisms from yeast to humans. The members of this special group of transcription factors were found to be involved not only in embryonic development but also in disease initiation and its progression. Given their importance in several fundamental processes, the translation, subcellular location and turnover of bHLH proteins is tightly regulated. Alterations in the expression of bHLH proteins have been associated with multiple diseases also in context with Atoh8 which seems to unfold its functions as both transcriptional activator and repressor. Like many other bHLH transcription factors, so far, Atoh8 has also been observed to be involved in both embryonic development and carcinogenesis where it mainly acts as tumor suppressor. This review summarizes our current understanding of Atoh8 structure, function and regulation and its complex and partially controversial involvement in development and disease.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
David Talavera ◽  
Modesto Orozco ◽  
Xavier de la Cruz

Functional modification of transcription regulators may lead to developmental changes and phenotypical differences between species. In this work, we study the influence of alternative splicing on transcription factors in human and mouse. Our results show that the impact of alternative splicing on transcription factors is similar in both species, meaning that the ways to increase variability should also be similar. However, when looking at the expression patterns of transcription factors, we observe that they tend to diverge regardless of the role of alternative splicing. Finally, we hypothesise that transcription regulation of alternatively spliced transcription factors could play an important role in the phenotypical differences between species, without discarding other phenomena or functional families.


Sign in / Sign up

Export Citation Format

Share Document