The Al–Cr–Fe phase diagram. II. Liquidus surface and phase equilibria for crystallization of 58–100 at.% Al alloys

2011 ◽  
Vol 50 (3-4) ◽  
pp. 217-229 ◽  
Author(s):  
V. G. Khoruzha ◽  
K. E. Kornienko ◽  
D. V. Pavlyuchkov ◽  
B. Grushko ◽  
T. Ya. Velikanova
1990 ◽  
Vol 213 ◽  
Author(s):  
Mohan Paruchuri ◽  
T.B. Massalski

ABSTRACTLiquid-solid and solid state phase equilibria in the ternary system Ti-Al-V have been studied using a combination of several experimental techniques. A likely surface of primary seperation (i.e., the liquidus surface) is proposed in the form of the usual projection on the triangular base and the directions of the monovariant lines are defined. Four ternary invariant reactions have been identified in this system. Solid state equilibria have been determined at 900°C and are presented in the form of an isothermal section through the phase diagram. These are very similar to the relationships reported at 800°C by Hashimoto et al. [1].


Author(s):  
Andrew V. Kosyakov ◽  
Ivan N. Nekrylov ◽  
Nikolai Yu. Brezhnev ◽  
Ekaterina N. Malygina ◽  
Alexander Yu. Zavrazhnov

Целью настоящей работы было термографическое исследование T-x диаграммы системы Ga – Se в диапазоне температур от 500 до 1100 °С и в диапазоне составов от 48.0 до 61.5 mol % Se. Методом исследования являлся дифференциальный термический анализ c компьютерной регистрацией данных. Получены свидетельства о наличии ретроградного солидуса фазы g-GaSe со стороны селена (с областью гомогенности в несколько десятых mol % при температурах выше эвтектической) и о независимом существовании близких по составу фаз e-GaSe и g-GaSe. При этом более богатая галлием фаза e-GaSe испытывает перитектический распад с образованием расплава (L2) и g-GaSe. Для темпера-туры предполагаемой перитектической реакции получено значение 921 ±2 °С. Вместе стем, на данном этапе работ не получено никаких данных в пользу существования ожидавшейся (по аналогии с системой Ga – S) высокотемпературной модификации, близкой по составу к сесквиселениду галлия (Ga2S3). Другие результаты, полученные в настоящей работе (характер и температуры плавления промежуточных фаз, температуры эвтектического и монотектического превращений, а также координата эвтектического состава), хорошо согласуются с литературными данными по исследованной системе         ЛИТЕРАТУРА1. Kainzbauer P., Richter K. W., Ipser H. The binary Bi-Rh phase diagram: stable and metastable phases //J. Phase Equilibria and Diffusion, 2018, v. 39(1), pp. 17– 34. DOI: https://doi.org/10.1007/s11669-017-0600-52. Dolyniuk J.-A., Kaseman D. C., Sen S., Zhao J., Osterloh F. E., Kovnir K. mP-BaP3: A new phase froman old binary system // Chem. Eur. J., 2014, v. 20, pp. 10829–10837, DOI: https://doi.org/10.1002/chem.2013050783. Березин С. С., Завражнов А. Ю., Наумов А. В., Некрылов И. Н., Брежнев Н. Ю. Фазовая диаграммасистемы Ga–S в области 48.0–60.7 мол. % S // Конденсированные среды и межфазные границы, 2017,т. 19(3), с. 321–335. DOI: https://doi.org/10.17308/kcmf.2017.19/2084. Волков В. В., Сидей В. И., Наумов А. В., Некрылов И. Н., Брежнев Н. Ю., Малыгина Е. Н., Завражнов А. Ю. Высокотемпературная кубическая модификация сульфида галлия (Xs = 59 мол. %) и Т, х-диаграмма системы Ga – S // Конденсированные среды и межфазные границы, 2019, т. 21(1), с. 37–50.DOI: https://doi.org/10.17308/kcmf.2019.21/7155. Zavrazhnov A., Berezin S., Kosyakov A., Naumov A., Berezina M., Brezhnev N. J. The phase diagramof the Ga–S system in the concentration range of 48.0–60.7 mol % S // Thermal Analysis and Calorimetry,2018, v. 134(1), pp. 483–492. DOI: https://doi.org/10.1007/s10973-018-7124-z6. Okamoto H. Ga–Se (Gallium-Selenium) // J. Phase Equilibria and Diffusion, 2009, v. 30, p. 658. DOI:https://doi.org/10.1007/s11669-009-9601-37. Dieleman J., Sanders F. H. M. Phase diagram of the Ga-Se system // Phillips J. Res., 1982, v. 37(4),pp. 204 – 229.8. Zavrazhnov A. Yu. Turchen D. N., Goncharov Eu. G., Zlomanov V. P. Manometric method for thestudy of P-T-x diagrams // J. Phase Equilibria and Diffusion, 2001, v. 22(4), pp. 482–490. DOI: https://doi.org/10.1361/1054971017703330639. Shtanov V. I, Komov A. A, Tamm M. E., Atrashenko D. V., Zlomanov V. P. Gallium-selenium systemphase diagram and photoluminescence spectra of GaSe crystals // Doklady Akademii nauk SSSR, 1998, v. 361(3),pp. 357–361. (in Russ.)10. Glazov V. M., Pavlova L. M. Semiconductor and metal binary systems. Phase equilibria and chemicalthermodynamics. Springer, 1989, 327 p. DOI: https://doi.org/10.1007/978-1-4684-1680-011. Ider M. Pankajavalli R., Zhuang W. Thermochemistry of the Ga–Se System. J. Solid State Scienceand Techn., 2015, v. 4(5), Q51–Q60 DOI: https://doi.org/10.1149/2.0011507jss12. Zavrazhnov A., Naumov A., Sidey V., Pervov V. Composition control of low-volatile solids throughchemical vapor transport reactions. III. The example of gallium monoselenide: Control of the polytypicstructure, non-stoichiometry and properties // Thermochimica Acta, 2012, v. 527, pp. 118–124. DOI:https://doi.org/10.1016/j.tca.2011.10.012


1982 ◽  
Vol 19 ◽  
Author(s):  
M. D. Hanna ◽  
A. Hellawell

ABSTRACTIt is well known that the morphology of primary and eutectic silicon resulting from solidification is sensitive to minor impurity additions: “modification” by alkali and alkaline earth metals is common foundry practice and the use of strontium is of recent and current interest because its effect is retained in liquid metal for relatively long times. The mechanism for modification remains obscure and is not necessarily the same from one elemental addition to the next, but it is essential to separate the equilibrium and kinetic influences if the phenomenon is to be better understood. Accordingly, the liquidus surface and eutectic reactions have been located in the relevant part of the Al-Si-Sr system by careful thermal analysis and the results correlated with the microstructure. Comparison is made with the parallel behavior of alkali metal additions.


2003 ◽  
Vol 34 (9) ◽  
pp. 1771-1782 ◽  
Author(s):  
A. Misra ◽  
G. Ghosh ◽  
G. B. Olson ◽  
R. Bishop
Keyword(s):  

2020 ◽  
Vol 41 (3) ◽  
pp. 282-298
Author(s):  
Peter Kainzbauer ◽  
Martin C. J. Marker ◽  
Klaus W. Richter

Abstract The binary manganese–rhodium (Mn–Rh) phase diagram was reinvestigated from 5 to 90 at.% Rh with focus on determining the transition temperature between the ordered γ′-Mn3Rh and the γ-Mn phase as well as the transition temperature between of the tetragonal and cubic MnRh phase and phase boundaries, applying XRD, DTA and SEM including EDX. A reassessment of the Mn–Rh phase diagram based on obtained and literature data is given. Furthermore, the phase equilibria of the ternary bismuth–manganese–rhodium (Bi–Mn–Rh) system were experimentally investigated, focusing on the possible existence of new ferromagnetic phases. Isothermal sections at 330 °C and 600 °C were studied applying powder XRD and EDX. The corresponding phase diagram was established based on these results. No additional ferromagnetic phase was found in the ternary system.


Sign in / Sign up

Export Citation Format

Share Document