Growth Kinetics of Intermetallic Compounds During Interfacial Reactions Between SnAgCuGa Lead-Free Solder and Cu Substrate

2017 ◽  
Vol 56 (1-2) ◽  
pp. 108-112 ◽  
Author(s):  
HuiMing Chen ◽  
Genfeng Shang ◽  
Wang Yi Hu ◽  
Hang Wang
2005 ◽  
Vol 392 (1-2) ◽  
pp. 192-199 ◽  
Author(s):  
D.Q. Yu ◽  
C.M.L. Wu ◽  
C.M.T. Law ◽  
L. Wang ◽  
J.K.L. Lai

2004 ◽  
Vol 45 (3) ◽  
pp. 754-758 ◽  
Author(s):  
Ikuo Shohji ◽  
Yuji Shiratori ◽  
Hiroshi Yoshida ◽  
Masahiko Mizukami ◽  
Akira Ichida

2007 ◽  
Vol 22 (10) ◽  
pp. 2663-2667 ◽  
Author(s):  
Yee-wen Yen ◽  
Wei-kai Liou

This study investigates interfacial reactions of (Sn–9Zn) + xCu/Ni systems. Ni5Zn21, Cu5Zn8, (Ni,Zn,Cu)3Sn4, (Cu,Ni,Zn)6Sn5, and Cu6Sn5 phases were formed on the Sn–9Zn/Ni interface at 240–270 °C, when 0–10 wt% Cu was added to the Sn–9Zn solder. Experimental results indicate that changing the concentration of Cu in the Sn–9Zn solder dramatically changes the formation of intermetallic compounds (IMCs) in the (Sn–9Zn) + xCu/Ni system. Different diffusion and segregation rates of elements are the main reasons for a change in the IMC evolution.


2007 ◽  
Vol 561-565 ◽  
pp. 2115-2118
Author(s):  
Yun Fu ◽  
Qi Zhang ◽  
Feng Sun ◽  
Hao Yu Bai

The growth and morphology of the intermetallic compounds (IMC) formed at the interface between the solder ( Sn–3.5Ag–0.5Cu ) and the Cu substrate of the lead - free solder joint have been investigated by means of isothermal aging at 125°C. The scalloped Cu6Sn5 intermetallic compound layer was formed at the interface between the solder and Cu substrate upon reflow. The thickness of Cu6Sn5 layer increased with aging time. Cu3Sn appeared between Cu6Sn5 layer and Cu substrate when isothermally aged for 100 hours. Compare to Cu6Sn5 , the thickness of Cu3Sn was rather low, and nearly did not increase with aging time. In this paper, the comparison was made among the Sn-Pb and the Sn-Ag-Cu(SAC) solders which were pre-treated differently before soldering.


Sign in / Sign up

Export Citation Format

Share Document