Morphometric characteristics and ruggedness of the bottom topography in the north part of the Black Sea

2011 ◽  
Vol 21 (4) ◽  
pp. 261-279
Author(s):  
A. I. Avdeev ◽  
V. N. Belokopytov
1999 ◽  
Vol 10 (2) ◽  
pp. 123-130
Author(s):  
Yu. I. Goryachkin ◽  
V. A. Ivanov ◽  
Yu. A. Stepanyants

2019 ◽  
Vol 5 ◽  
pp. 37-46
Author(s):  
Yurii Tuchkovenko ◽  
Oksana Tuchkovenko ◽  
Valeriy Khokhlov

The north-western part of the Black Sea Ukrainian coast is characterized by the presence of 12 marine lagoons which do not presently have permanent natural connections with the sea. Because of regional climate change, these lagoons have experienced a significant deficit of annual freshwater balance during the last decades and, consequently, an increase in salinity and eutrophication of their waters. One way to stabilize the hydroecological regime of lagoons is to maintain their regular connection with the sea via artificial connecting channels. The deepest and most prolonged Tyligulskyi Liman lagoon is used as an example to determine the morphometric characteristics (width, depth) of the artificial connecting channel which ensures bidirectional water exchange of the lagoon with the sea, i. e. its partial flushing. A numerical hydrodynamic model is used to estimate how the morphometric characteristics of the connecting channel influence the intensity of water exchange between the lagoon and the sea and of water renewal by seawater for the various parts of the lagoon. The dynamics of sea water volume concentration in reference points in the lagoon is used as an indicator of seawater intrusion into the lagoon and their degree of water renewal in its various zones. The proposed methodology could be used for other lagoons of the same type in the north-western part of the Black Sea.


Author(s):  
Eleonora P. Radionova

The associations and ecological conditions of the existence of modern diatoms of the North-West (Pridneprovsky), Prikerchensky and Eastern regions of the subtidal zone of the Black Sea are considered. Based on the unity of the composition of the Present and Sarmatian-Meotian diatom flora, an attempt has been made to model some of the ecological c situation of the Late Miocene Euxinian basin.


Author(s):  
B. N. Panov ◽  
E. O. Spiridonova ◽  
◽  

Russian fishermen harvest European anchovy primarily off the Black Sea coast of the Krasnodar Territory during its wintering and wintering migrations. At wintering grounds, temperature conditions become a secondary factor in determining the behaviour of commercial concentration of European anchovy, with wind and currents being the primary factors. Therefore, the aim of this work is to determine the potential use of daily data on water circulation and local atmospheric transport in short-term (1–7 days) forecasting of European anchovy fishing in the Black Sea. The research used the European anchovy fishery monitoring materials for January – March 2019, as well as daily maps of the Black and Azov Seas level anomalies (from satellite altimetry data) and surface atmospheric pressure and temperature in Europe (analysis) for the mentioned period. The dynamics of the catch rate and its relation to altimetry and atmospheric transport indicators in the north-eastern part of the Black Sea were investigated using graphical and correlation methods. This analysis showed that the main factor contributing to increased catches is intensification of northwest currents in the coastal 60-km zone. The effect of atmospheric transport on fishing efficiency depends on the mesoscale eddy structure of the nearshore current field. In the presence of an intense northwest current in the fishing area, southwest atmospheric transports have a positive effect on fishing, while in the presence of an anticyclonic meander of currents, northeast atmospheric transports become effective. The presence of maximum significant relationships when the determinants of fishing performance are shifted by 1–7 days allows making short-term predictions of fishing efficiency.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 491-501 ◽  
Author(s):  
G. I. Shapiro ◽  
D. L. Aleynik ◽  
L. D. Mee

Abstract. There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.


Sign in / Sign up

Export Citation Format

Share Document