Comprehensive high-speed reconciliation for continuous-variable quantum key distribution

2020 ◽  
Vol 19 (9) ◽  
Author(s):  
Dabo Guo ◽  
Chao He ◽  
Tianhao Guo ◽  
Zhe Xue ◽  
Qiang Feng ◽  
...  
Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 613
Author(s):  
Ignatius William Primaatmaja ◽  
Cassey Crystania Liang ◽  
Gong Zhang ◽  
Jing Yan Haw ◽  
Chao Wang ◽  
...  

Most quantum key distribution (QKD) protocols can be classified as either a discrete-variable (DV) protocol or continuous-variable (CV) protocol, based on how classical information is being encoded. We propose a protocol that combines the best of both worlds – the simplicity of quantum state preparation in DV-QKD together with the cost-effective and high-bandwidth of homodyne detectors used in CV-QKD. Our proposed protocol has two highly practical features: (1) it does not require the honest parties to share the same reference phase (as required in CV-QKD) and (2) the selection of decoding basis can be performed after measurement. We also prove the security of the proposed protocol in the asymptotic limit under the assumption of collective attacks. Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over metropolitan distances.


2015 ◽  
Vol 40 (16) ◽  
pp. 3695 ◽  
Author(s):  
Duan Huang ◽  
Peng Huang ◽  
Dakai Lin ◽  
Chao Wang ◽  
Guihua Zeng

2015 ◽  
Vol 13 (02) ◽  
pp. 1550010 ◽  
Author(s):  
Dakai Lin ◽  
Duan Huang ◽  
Peng Huang ◽  
Jinye Peng ◽  
Guihua Zeng

Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.


Sign in / Sign up

Export Citation Format

Share Document