Evaluation of Undrained Shear Strength of Clay Using the CPTU Pore Pressure Method

2018 ◽  
Vol 55 (3) ◽  
pp. 162-167
Author(s):  
Xuepeng Li ◽  
Guojun Cai ◽  
Songyu Liu
2019 ◽  
Vol 500 (1) ◽  
pp. 129-146 ◽  
Author(s):  
Jasper Moernaut ◽  
Gauvain Wiemer ◽  
Achim Kopf ◽  
Michael Strasser

AbstractSubaqueous mass-transport deposits (MTDs) can be important elements in hydrocarbon systems, forming potential reservoirs or seals. Most research has targeted outcrops or moderately to deeply buried MTDs and, therefore, the petrophysical properties of near-seafloor MTDs, and their influence in the trapping and release of shallow fluids, is poorly studied. Here, we investigate shallow MTDs in Lake Villarrica (Chile) by combining sub-bottom profiles, free-fall penetrometer data, pore pressure dissipation tests and geotechnical properties of sediment cores. Low undrained shear strength under a surficial MTD indicates underconsolidation caused by sudden loading and rapid sealing. Larger, buried MTDs show acoustic signatures of free gas at their base, indicating effective sealing. This is supported by degassing core gaps just below MTDs and by excess pore pressure ratios c. 30–70% within MTDs. Acoustic windows below rafted blocks suggest local fluid escape. MTDs exhibit elevated undrained shear strength and reduced porosity compared to surrounding sediments, but are comparable to upslope source sequences. This suggests that MTD sealing capacity in Villarrica relates to the apparently overconsolidated nature of the slope sequence, leaving a minor role for shear densification. This study shows that shallow MTDs can form a relatively rapid seal for fluid migration, locally degraded by rafted blocks.


1974 ◽  
Vol 11 (1) ◽  
pp. 46-58
Author(s):  
Guy Lefebvre ◽  
Liguori M. Lefebvre ◽  
Peter Rosenberg

A 32 ft (10 m) high embankment has been built at Matagami, Quebec, on a varved clay deposit of the glacial lake Barlow–Ojibway. This paper reports on some aspects considered in the design, mainly the cementation and the high plasticity of the clay. The variation of settlements and pore pressure is presented and indicates that, 8 months after construction, the pore pressure dissipation is very small while the measured settlements reach 18 in. (45 cm).Triaxial tests, with various consolidation times, were carried out on specimens cut from undisturbed block samples obtained in the same area, in order to study the effect of consolidation on the shear strength of these cemented clays. Results indicate that the undrained shear strength decreases during consolidation until the degree of consolidation reaches 50%. This phenomenon together with the non-dissipation of pore pressure in the field is attributed to the collapse of the cemented structure when the applied pressure exceeds Pc.Similar behavior reported for two other cases of embankments built on deposits of the same origin, leads to the conclusion that the stage construction method is not suitable for embankment on cemented clays, at least those from the glacial lake Barlow–Ojibway, because no gain in shear strength is recorded over a normal consolidation period.


2015 ◽  
Vol 52 (3) ◽  
pp. 318-325 ◽  
Author(s):  
F.M. Mantaras ◽  
E. Odebrecht ◽  
F. Schnaid

This paper describes a method developed to link the measured piezocone dissipation excess pore-water pressure (Δu) to the soil undrained shear strength (su). In cohesive soils, both Δu and su are dependent on the same variables (compressibility, stress state, stress history), which allows them to be related by the theoretical cavity expansion – critical state framework. A mathematical derivation is presented to demonstrate that the ratio of normalized maximum excess pore pressure and the normalized undrained shear strength fluctuates around a mean value, being affected by soil strength and compressibility and independent of stress history. The predicted su values obtained from the proposed approach are calibrated against field vane shear strength in both normally consolidated (monotonic dissipation tests) and overconsolidated soils (dilatory dissipation tests). Reported results are consistent and encourage the use of the method in engineering practice. On a routine basis, su estimated from pore pressure can be compared with values predicted from penetration resistance, adding desired redundancy for purposes of error detection when interpreting cone penetration testing with pore pressure measurement (CPTU) data.


2017 ◽  
Vol 62 (2) ◽  
pp. 367-384
Author(s):  
Sebastian Olesiak

Abstract Soil strength parameters needed for the calculation of bearing capacity and stability are increasingly determined from field testing. This paper presents a method to determine the undrained shear strength cuWST of the soil, based on the Weight Sounding Test (WST). The innovative solution which allows for a significant reduction of equipment needed for geotechnical field investigation is presented. The proposed method is based on an additional measurement of the torque during testing. It then becomes possible to estimate the undrained shear strength, cuWST of the soil, using the correlation given in this paper. The research results presented in this paper were carried out on selected cohesive soils, Miocene clays from the Carpathian Foredeep.


Sign in / Sign up

Export Citation Format

Share Document