Using piezocone dissipation test to estimate the undrained shear strength in cohesive soil

2015 ◽  
Vol 52 (3) ◽  
pp. 318-325 ◽  
Author(s):  
F.M. Mantaras ◽  
E. Odebrecht ◽  
F. Schnaid

This paper describes a method developed to link the measured piezocone dissipation excess pore-water pressure (Δu) to the soil undrained shear strength (su). In cohesive soils, both Δu and su are dependent on the same variables (compressibility, stress state, stress history), which allows them to be related by the theoretical cavity expansion – critical state framework. A mathematical derivation is presented to demonstrate that the ratio of normalized maximum excess pore pressure and the normalized undrained shear strength fluctuates around a mean value, being affected by soil strength and compressibility and independent of stress history. The predicted su values obtained from the proposed approach are calibrated against field vane shear strength in both normally consolidated (monotonic dissipation tests) and overconsolidated soils (dilatory dissipation tests). Reported results are consistent and encourage the use of the method in engineering practice. On a routine basis, su estimated from pore pressure can be compared with values predicted from penetration resistance, adding desired redundancy for purposes of error detection when interpreting cone penetration testing with pore pressure measurement (CPTU) data.

2022 ◽  
Vol 28 (3) ◽  
pp. 241-252
Author(s):  
Sugeng Krisnanto

Abstract Two theoretical equations are developed to calculate the ratio of undrained shear strength to the vertical effective stress (the ratio of (su/sv’)) for normally consolidated saturated cohesive soils. The effective stress approach is used as the basis in the development of the theoretical equations. The theoretical equations are developed by relating the total and the effective stress paths. The development of the excess pore-water pressure is quantified using Skempton A and B pore-water pressure parameters. The theoretical equations are developed for two initial stress conditions: (i) an initially hydrostatic condition and (ii) an initially Ko (non-hydrostatic) condition. The performance of the theoretical equations of this study is compared with field and laboratory measurement data obtained from the literature. The close results between the theoretical equations and the measurements show that the theoretical equations of this study can compute the ratio of (su/sv’) well. Using the theoretical equations, the values of the ratio of (su/sv’) commonly used in engineering practice can be explained from the soil mechanics framework. Keywords: Saturated cohesive soils, c/p ratio, normally consolidated soil, undrained shear strength, effective shear strength, theoretical equation. Abstrak Dua persamaan teoritis dikembangkan untuk menghitung rasio kuat geser tak teralirkan dengan tegangan efektif vertikal (rasio (su/sv’)) untuk tanah kohesif jenuh terkonsolidasi normal. Pendekatan tegangan efektif dijadikan dasar dalam pengembangan kedua persamaan teoretis ini. Persamaan teoretis tersebut dikembangkan menghubungkan lintasan tegangan total dan lintasan tegangan efektif. Kenaikan tekanan air pori ekses dikuantifikasi menggunakan parameter tekanan air pori A dan B dari Skempton. Persamaan teoretis dikembangkan untuk dua kondisi tegangan awal: (i) tegangan awal hidrostatik dan (ii) teganan awal Ko (non hidrostatik). Kinerja kedua persamaan teoretis tersebut dibandingkan terhadap data pengukuran lapangan dan pengujian laboratorium yang diperoleh dari literatur. Persamaan teoretis dari studi ini memiliki kinerja yang baik dalam memperhitungan rasio (su/sv’) yang ditunjukkan dengan dekatnya hasil perhitungan menggunakan persamaan teoretis dan hasil pengukuran lapangan maupun pengujan laboratorium. Dengan persamaan teoretis tersebut, nilai rasio (su/sv’) yang biasa digunakan dalam rekayasa praktis bisa dijelaskan secara mekanika tanah. Kata-kata Kunci: Tanah kohesif jenuh, rasio c/p, tanah terkonsolidasi normal, kuat geser tak teralirkan, kuat geser efektif, persamaan teoretis.  


2019 ◽  
Vol 500 (1) ◽  
pp. 129-146 ◽  
Author(s):  
Jasper Moernaut ◽  
Gauvain Wiemer ◽  
Achim Kopf ◽  
Michael Strasser

AbstractSubaqueous mass-transport deposits (MTDs) can be important elements in hydrocarbon systems, forming potential reservoirs or seals. Most research has targeted outcrops or moderately to deeply buried MTDs and, therefore, the petrophysical properties of near-seafloor MTDs, and their influence in the trapping and release of shallow fluids, is poorly studied. Here, we investigate shallow MTDs in Lake Villarrica (Chile) by combining sub-bottom profiles, free-fall penetrometer data, pore pressure dissipation tests and geotechnical properties of sediment cores. Low undrained shear strength under a surficial MTD indicates underconsolidation caused by sudden loading and rapid sealing. Larger, buried MTDs show acoustic signatures of free gas at their base, indicating effective sealing. This is supported by degassing core gaps just below MTDs and by excess pore pressure ratios c. 30–70% within MTDs. Acoustic windows below rafted blocks suggest local fluid escape. MTDs exhibit elevated undrained shear strength and reduced porosity compared to surrounding sediments, but are comparable to upslope source sequences. This suggests that MTD sealing capacity in Villarrica relates to the apparently overconsolidated nature of the slope sequence, leaving a minor role for shear densification. This study shows that shallow MTDs can form a relatively rapid seal for fluid migration, locally degraded by rafted blocks.


2021 ◽  
Vol 11 (16) ◽  
pp. 7612
Author(s):  
Yuan Lu ◽  
Jian Chen ◽  
Juehao Huang ◽  
Libo Feng ◽  
Song Yu ◽  
...  

Soft soil is often subjected to cyclic loading such as that imposed during storms, under traffic, or in an earthquake. Furthermore, the cyclic-loading-induced excess pore water pressure can be partially dissipated after cyclic loading. Thus, different reconsolidation processes should be considered. A series of static and dynamic triaxial tests were conducted on undisturbed soft soil to determine the post-cyclic mechanical behavior thereof, such as the variation of undrained shear strength, the development of excess pore water pressure, and the evolution of effective stress path. The effects of consolidated confining pressure, cyclic stress ratio, and degree of reconsolidation were analyzed. Results show that the trend of all stress–strain curves is similar under different conditions. The effect of the degree of reconsolidation is such that, with increasing the degree of reconsolidation, the shear strength is enhanced. Meanwhile, compared with undrained shear strength without cyclic loading, the shear strength after cyclic loading with full reconsolidation is increased. These factors also have a significant effect on the undrained shear strength: the greater both the confining pressure and cyclic stress ratio are, the higher the undrained shear strength. A positive excess pore water pressure is always observed during post-cyclic shearing process, irrespective of different factors. The S-shaped effective stress paths under different test conditions are observed and cross the critical state line. The microstructures of undisturbed soil and post-cyclic specimens with different degrees of reconsolidation were quantitatively investigated. Besides that, the degree of influence of different factors on the post-cyclic undrained strength was analyzed. Based on the test results, the undrained shear strength with cyclic load-history was well predicted by existing models.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wei Liu ◽  
Juan Wang ◽  
Gaochao Lin ◽  
Li Wen ◽  
Qian Wang

In China, engineers have worked to create additional usable land for building construction by flattening the ridges of hills and filling in the adjacent valleys. China’s Loess Plateau comprises a type of soil (loess) with a large pore structure that can collapse and become unstable when exposed to groundwater. Conventional valley fill materials include remolded loess or remolded loess treated with cement, lime, gypsum, or other stabilizing additives. These stabilizers are often detrimental to the surrounding environment. Moreover, loess treated with conventional stabilizers exhibits excessive brittleness, which is not suitable for building foundations. Adequate stability of the building foundations in the filled valleys is required to ensure public safety. In this study, we tested 50 remolded loess samples treated with a lignin polymer compound to determine its potential as a valley fill material. Triaxial tests, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to study the mechanical characteristics of each sample, determine the effects of the lignin treatment on the loess, and identify the microscopic mechanism affecting shear stress in the lignin-treated loess. The corresponding development of excess pore pressure and volumetric responses under monotonic triaxial testing were also considered. Based on this study’s results, the optimum lignin content in the treated loess samples was 4%; lignin contents exceeding 4% decreased axial stress and increased dilation after saturation. The shear strength and strain-hardening phenomenon of the lignin-treated loess samples increased as the lignin content increased, while the excess pore water pressure decreased. Microscopically, the addition of lignin increased cohesion in the loess samples, while slightly contributing to the internal friction angle. The use of lignin as a stabilizing additive for valley fill material shows potential for controlling building foundation deformation by increasing soil strength and minimizing environmental impacts by maintaining the soil pH and limiting pollutant production.


Author(s):  
Simon Rabarijoely

The use of dilatometer test for the determination of undrained shear strength in organic soils The use of dilatometer test for the determination of undrained shear strength in organic soils. In engineering practice the empirical correlations or charts are often use to determine soil properties for design calculations. The DMT tests results are analysed on the basis of the empirical formulas proposed by Marchetti (1980). In this paper the new chart to determine the τfu of organic mud was proposed. The chart presents the relationships between dilatometer readings (p0 - u0), (p1 - u0), σ'v0 and τfu. The chart will be helpful in geotechnical design of embankments constructed on organic subsoil.


Author(s):  
Chee K. Wong ◽  
Martin Lun ◽  
Ron C.K. Wong

This paper presents an interpretation technique to quantify the effects of compaction state and matric suction on the undrained shear strength of compacted clay under confined undrained triaxial compression. This novel technique is based on the mathematical frameworks of SHANSEP (Stress History and Normalized Soil Engineering Property) method for saturated soil and BBM (Barcelona Basic model) for unsaturated soil. Test data of compacted Calgary till were analyzed and interpreted using the proposed technique. The interpretation technique is very useful in delineating the relative impacts of the factors on the behavioral trends in measured undrained shear strength. It was found that in addition to the initial compacted void ratio and suction, soil structure and failure mode exert significant influence on the undrained shear strength of compacted clay. This technique is attractive to engineering practitioners because the confined undrained compression tests (with no pore air and water pressure measurement) are much simpler and less time consuming compared to rigorous laboratory tests on unsaturated soil.


1973 ◽  
Vol 10 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Thomas L. Holzer ◽  
Kaare Höeg ◽  
Kandiah Arulanandan

The objective of this presentation is to examine experimentally how the excess pore-water pressure is related to the mechanism for undrained creep of San Francisco Bay mud. The results are discussed in the context of creep mechanisms previously suggested in the literature and based on laboratory testing.It is found that shear strains occurring during undrained creep are directly related to a gradual but significant increase in excess pore pressure and, hence, reduction in effective stresses. The increase in magnitude of the pore pressure is, except immediately after the creep shear stress is applied, solely a function of the initial consolidation stress and consolidation period. The magnitude of the long-term build-up may be related to the amount of secondary compression which would occur during drained conditions. It increases with the organic content of the soil and decreases with the degree of remolding. The mechanism for the increase in pore-water pressure may be explained by drainage of water from micropores in the microstructure into the macrostructure.Unless one accounts for the increase in pore pressures during undrained creep, it is unlikely that one will be successful in formulating a generally valid mathematical model for stress–strain–strength–time behavior based on laboratory testing.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hongwei Ying ◽  
Lisha Zhang ◽  
Kanghe Xie ◽  
Dazhong Huang

Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameterθhas been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameterθand the permeability and compressibility of the double-layered soil system.


Sign in / Sign up

Export Citation Format

Share Document