scholarly journals Non-Axisymmetric Magnetic Fields and Flip-Flops on the Sun and Cool Stars

Solar Physics ◽  
2004 ◽  
Vol 224 (1-2) ◽  
pp. 123-131 ◽  
Author(s):  
S. V. Berdyugina
Keyword(s):  
The Sun ◽  
2013 ◽  
Vol 334 (1-2) ◽  
pp. 164-167
Author(s):  
M.J. Martínez González ◽  
S.C. Marsden
Keyword(s):  
The Sun ◽  

2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


1994 ◽  
Vol 154 ◽  
pp. 437-447 ◽  
Author(s):  
Steven H. Saar

I review the advantages, techniques, and results of measurement of magnetic fields on cool stars in the infrared (IR). These measurements have generated several important results, including the following: the first data on the magnetic parameters of dMe and RS CVn variables; evidence for field strength confinement by photospheric gas pressure; support for the correlation between magnetic flux and rotation, with possible saturation at high rotation rates; indications of horizontal and/or vertical magnetic field structure; and evidence of spatial variations in B over a stellar surface. I discuss these results in detail, and suggest future directions for IR magnetic field research.


Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lisa Spiecker ◽  
Bo Leberecht ◽  
Corinna Langebrake ◽  
Malien Laurien ◽  
Shambhavi Rajendra Apte ◽  
...  

Abstract Every year, billions of animals leave their home range and start seasonal migrations in order to find more favorable resources and to escape harsh environmental conditions. These round trips often span thousands of kilometers. To successfully navigate along their route, animals rely on various external references. While landmarks and celestial cues like stars or the sun are easy to imagine as guidance on these journeys, using the geomagnetic field for orientation is more elusive. The geomagnetic field is an omnipresent cue, which can be sensed and relied upon by many animals, even when visual cues are sparse. How magnetic fields can be perceived seems to vary between birds and fish. While birds seem to use a mechanism based on the quantum mechanical properties of electron spins, fish may have evolved a compass similar in its function to the technical devises developed by humans. How these mechanisms work precisely and how they are integrated are research questions addressed in SFB 1372.


2018 ◽  
Vol 31 (0) ◽  
pp. 152-158 ◽  
Author(s):  
V. G. Lozitsky ◽  
V. B. Yurchyshyn ◽  
K. Ahn ◽  
H. Wang ◽  
N. I. Lozitska

1977 ◽  
Vol 4 (2) ◽  
pp. 241-250 ◽  
Author(s):  
N. O. Weiss

One of the most exciting developments in solar physics over the past eight years has been the success of ground based observers in resolving features with a scale smaller than the solar granulation. In particular, they have demonstrated the existence of intense magnetic fields, with strengths of up to about 1600G. Harvey (1976) has just given an excellent summary of these results.In solar physics, theory generally follows observations. Inter-granular magnetic fields had indeed been expected but their magnitude came as a surprise. Some problems have been discussed in previous reviews (Schmidt, 1968, 1974; Weiss, 1969; Parker, 1976d; Stenflo, 1976) and the new observations have stimulated a flurry of theoretical papers. This review will be limited to the principal problems raised by these filamentary magnetic fields. I shall discuss the interaction of magnetic fields with convection in the sun and attempt to answer such questions as: what is the nature of the equilibrium in a flux tube? how are the fields contained? what determines their stability? how are such strong fields formed and maintained? and what limits the maximum field strength?


1953 ◽  
Vol 113 (3) ◽  
pp. 357-381 ◽  
Author(s):  
H. W. Babcock ◽  
T. G. Cowling
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document