scholarly journals Plasma Upflows Induced by Magnetic Reconnection Above an Eruptive Flux Rope

Solar Physics ◽  
2021 ◽  
Vol 296 (6) ◽  
Author(s):  
Deborah Baker ◽  
Teodora Mihailescu ◽  
Pascal Démoulin ◽  
Lucie M. Green ◽  
Lidia van Driel-Gesztelyi ◽  
...  

AbstractOne of the major discoveries of Hinode’s Extreme-ultraviolet Imaging Spectrometer (EIS) is the presence of upflows at the edges of active regions. As active regions are magnetically connected to the large-scale field of the corona, these upflows are a likely contributor to the global mass cycle in the corona. Here we examine the driving mechanism(s) of the very strong upflows with velocities in excess of 70 km s−1, known as blue-wing asymmetries, observed during the eruption of a flux rope in AR 10977 (eruptive flare SOL2007-12-07T04:50). We use Hinode/EIS spectroscopic observations combined with magnetic-field modeling to investigate the possible link between the magnetic topology of the active region and the strong upflows. A Potential Field Source Surface (PFSS) extrapolation of the large-scale field shows a quadrupolar configuration with a separator lying above the flux rope. Field lines formed by induced reconnection along the separator before and during the flux-rope eruption are spatially linked to the strongest blue-wing asymmetries in the upflow regions. The flows are driven by the pressure gradient created when the dense and hot arcade loops of the active region reconnect with the extended and tenuous loops overlying it. In view of the fact that separator reconnection is a specific form of the more general quasi-separatrix (QSL) reconnection, we conclude that the mechanism driving the strongest upflows is, in fact, the same as the one driving the persistent upflows of ≈10 – 20 km s−1 observed in all active regions.

2010 ◽  
Author(s):  
Julia Levashina ◽  
Frederick P. Morgeson ◽  
Michael A. Campion

2010 ◽  
Vol 108-111 ◽  
pp. 1158-1163 ◽  
Author(s):  
Peng Cheng Nie ◽  
Di Wu ◽  
Weiong Zhang ◽  
Yan Yang ◽  
Yong He

In order to improve the information management of the modern digital agriculture, combined several modern digital agriculture technologies, namely wireless sensor network (WSN), global positioning system (GPS), geographic information system (GIS) and general packet radio service (GPRS), and applied them to the information collection and intelligent control process of the modern digital agriculture. Combining the advantage of the local multi-channel information collection and the low-power wireless transmission of WSN, the stable and low cost long-distance communication and data transmission ability of GPRS, the high-precision positioning technology of the DGPS positioning and the large-scale field information layer-management technology of GIS, such a hybrid technology combination is applied to the large-scale field information and intelligent management. In this study, wireless sensor network routing nodes are disposed in the sub-area of field. These nodes have GPS receiver modules and the electric control mechanism, and are relative positioned by GPS. They can real-time monitor the field information and control the equipment for the field application. When the GPS position information and other collected field information are measured, the information can be remotely transmitted to PC by GPRS. Then PC can upload the information to the GIS management software. All the field information can be classified into different layers in GIS and shown on the GIS map based on their GPS position. Moreover, we have developed remote control software based on GIS. It can send the control commands through GPRS to the nodes which have control modules; and then we can real-time manage and control the field application. In conclusion, the unattended automatic wireless intelligent technology for the field information collection and control can effectively utilize hardware resources, improve the field information intelligent management and reduce the information and intelligent cost.


2013 ◽  
Vol 38 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmet Demir ◽  
Mustafa Laman ◽  
Abdulazim Yildiz ◽  
Murat Ornek

2021 ◽  
pp. 009539972110642
Author(s):  
Trine H. Fjendbo ◽  
Christian B. Jacobsen ◽  
Seung-Ho An

Leadership training is key to promoting more active leadership, but the effects of leadership training can depend on the gender context. Gender congruence between manager and employee can affect how the manager employs leadership behaviors adapted from training and how employees perceive leadership behavior. Quantitative data on 474 managers’ 4,833 employees before and after a large-scale field experiment with leadership training enable us to examine changes in employee-perceived leadership following training. The results show that gender congruence between manager and employee is associated with stronger leadership training effects on employee-perceived leadership behaviors. Female gender congruence shows the most pronounced effects.


Sign in / Sign up

Export Citation Format

Share Document