scholarly journals Deciphering Solar Magnetic Activity: 140 Years of the ‘Extended Solar Cycle’ – Mapping the Hale Cycle

Solar Physics ◽  
2021 ◽  
Vol 296 (12) ◽  
Author(s):  
Scott W. McIntosh ◽  
Robert J. Leamon ◽  
Ricky Egeland ◽  
Mausumi Dikpati ◽  
Richard C. Altrock ◽  
...  

AbstractWe investigate the occurrence of the “extended solar cycle” (ESC) as it occurs in a host of observational data spanning 140 years. Investigating coronal, chromospheric, photospheric, and interior diagnostics, we develop a consistent picture of solar activity migration linked to the 22-year Hale (magnetic) cycle using superposed epoch analysis (SEA) and previously identified Hale cycle termination events as the key time for the SEA. Our analysis shows that the ESC and Hale cycle, as highlighted by the terminator-keyed SEA, is strongly recurrent throughout the entire observational record studied, some 140 years. Applying the same SEA method to the sunspot record confirms that Maunder’s butterfly pattern is a subset of the underlying Hale cycle, strongly suggesting that the production of sunspots is not the fundamental feature of the Hale cycle, but the ESC is. The ESC (and Hale cycle) pattern highlights the importance of $55^{\circ }$ 55 ∘ latitude in the evolution, and possible production, of solar magnetism.

2021 ◽  
Author(s):  
Scott William McIntosh ◽  
Robert J Leamon ◽  
Ricky Egeland ◽  
Mausumi Dikpati ◽  
Richard C Altrock ◽  
...  

Abstract We investigate the occurrence of the ``extended solar cycle'' (ESC) as it occurs in a host observational data spanning 140 years. Investigating coronal, chromospheric, photospheric and interior diagnostics we develop a consistent picture of solar activity migration linked to the 22-year Hale (magnetic) cycle using superposed epoch analysis (SEA) using previously identified Hale cycle termination events as the key time for the SEA. Our analysis shows that the ESC and Hale cycle, as highlighted by the terminator-keyed SEA, is strongly recurrent throughout the entire observational record studied, some 140 years. Applying the same SEA method to the sunspot record confirms that Maunder's butterfly pattern is a subset of the underlying Hale cycle, strongly suggesting that the production of sunspots is not the fundamental feature of the Hale cycle, but the ESC is. The ESC (and Hale cycle) pattern highlights the importance of 55\degree\ latitude in the evolution, and possible production, of solar magnetism.


Solar activity varies irregularly with an 11-year period whereas the magnetic cycle has a period of 22 years. Similar cycles of activity are seen in other slowly rotating late-type stars. The only plausible theory for their origin ascribes them to a hydromagnetic dynamo operating at, or just below, the base of the convective zone. Linear (kinematic) dynamo models yield strictly periodic solutions with dynamo waves propagating towards or away from the equator. Nonlinear (magnetohydrodynamic) dynamo models allow transitions from periodic to quasi-periodic to chaotic behaviour, as well as loss of spatial symmetry followed by the development of complex spatial structure. Results from simple models can be compared with the observed sunspot record over the past 380 years and with proxy records extending over 9000 years, which show aperiodic modulation of the 11-year cycle.


2005 ◽  
Vol 23 (3) ◽  
pp. 827-830 ◽  
Author(s):  
G. W. Prölss

Abstract. A prominent peak in the electron temperature of the topside ionosphere is observed beneath the magnetospheric cleft. The present study uses DE-2 data obtained in the Northern Winter Hemisphere to investigate this phenomenon. First, the dependence of the location and magnitude of the temperature peak on the magnetic activity is determined. Next, using a superposed epoch analysis, the mean latitudinal profile of the temperature enhancement is derived. The results of the present study are compared primarily with those obtained by Titheridge (1976), but also with more recent observations and theoretical predictions.


The Sun’s magnetic activity varies cyclically, with a well-defined mean period of about 11 years. At the beginning of a new cycle, spots appear at latitudes around ±30°; then the zones of activity expand and drift towards the equator, where they die away as the new cycle starts again at higher latitudes. Active regions are typically oriented parallel to the equator, with oppositely directed magnetic fields in leading and following regions. The sense of these fields is opposite in the two hemispheres and reverses at sunspot minimum. So the magnetic cycle has a 22-year period, with waves of activity that drift towards the equator. Sunspot records show that there was a dearth of spots in the late 17th century - the Maunder minimum - which can also be detected in proxy records.


2009 ◽  
Vol 5 (H15) ◽  
pp. 352-353
Author(s):  
Alexander G. Kosovichev

AbstractHelioseismology has provided us with the unique knowledge of the interior structure and dynamics of the Sun, and the variations with the solar cycle. However, the basic mechanisms of solar magnetic activity, formation of sunspots and active regions are still unknown. Determining the physical properties of the solar dynamo, detecting emerging active regions and observing the subsurface dynamics of sunspots are among the most important and challenging problems. The current status and perspectives of helioseismology are briefly discussed.


2018 ◽  
Vol 8 ◽  
pp. A23 ◽  
Author(s):  
Luke Barnard ◽  
Ken G. McCracken ◽  
Mat J. Owens ◽  
Mike Lockwood

Context: Cosmogenic isotopes provide useful estimates of past solar magnetic activity, constraining past space climate with reasonable uncertainty. Much less is known about past space weather conditions. Recent advances in the analysis of 10Be by McCracken & Beer (2015, Sol Phys 290: 305–3069) (MB15) suggest that annually resolved 10Be can be significantly affected by solar energetic particle (SEP) fluxes. This poses a problem, and presents an opportunity, as the accurate quantification of past solar magnetic activity requires the SEP effects to be determined and isolated, whilst doing so might provide a valuable record of past SEP fluxes. Aims: We compare the MB15 reconstruction of the heliospheric magnetic field (HMF), with two independent estimates of the HMF derived from sunspot records and geomagnetic variability. We aim to quantify the differences between the HMF reconstructions, and speculate on the origin of these differences. We test whether the differences between the reconstructions appear to depend on known significant space weather events. Methods: We analyse the distributions of the differences between the HMF reconstructions. We consider how the differences vary as a function of solar cycle phase, and, using a Kolmogorov-Smirnov test, we compare the distributions under the two conditions of whether or not large space weather events were known to have occurred. Results: We find that the MB15 reconstructions are generally marginally smaller in magnitude than the sunspot and geomagnetic HMF reconstructions. This bias varies as a function of solar cycle phase, and is largest in the declining phase of the solar cycle. We find that MB15's excision of the years with very large ground level enhancement (GLE) improves the agreement of the 10Be HMF estimate with the sunspot and geomagnetic reconstructions. We find no statistical evidence that GLEs, in general, affect the MB15 reconstruction, but this analysis is limited by having too few samples. We do find evidence that the MB15 reconstructions appear statistically different in years with great geomagnetic storms.


2010 ◽  
Vol 28 (4) ◽  
pp. 993-1002 ◽  
Author(s):  
H. Lundstedt ◽  
T. Persson

Abstract. Two systems of Lorenz-type equations modelling solar magnetic activity are studied: Firstly a low order dynamic system in which the toroidal and poloidal fields are represented by x- and y-coordinates respectively, and the hydrodynamical information is given by the z coordinate. Secondly a complex generalization of the three ordinary differential equations studied by Lorenz. By studying the Poincaré map we give numerical evidence that the flow has an attractor with fractal structure. The period is defined as the time needed for a point on a hyperplane to return to the hyperplane again. The periods are distributed in an interval. For large values of the Dynamo number there is a long tail toward long periods and other interesting comet-like features. These general relations found for periods can further be physically interpreted with improved helioseismic estimates of the parameters used by the dynamical systems. Solar Dynamic Observatory is expected to offer such improved measurements.


1994 ◽  
Vol 12 (7) ◽  
pp. 612-624 ◽  
Author(s):  
J. R. Taylor ◽  
M. Lester ◽  
T. K. Yeoman

Abstract. A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index). Storms have also been classified here as either storm sudden commencements (SSCs) or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement). The prevailing solar wind conditions defined by the parameters solar wind speed (vsw), density (ρsw) and pressure (Psw) and the total field and the components of the interplanetary magnetic field (IMF) during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h), but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h) the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.


Sign in / Sign up

Export Citation Format

Share Document