winter hemisphere
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 13 (24) ◽  
pp. 5150
Author(s):  
Faisal S. Boudala ◽  
Jason A. Milbrandt

In this study, the climatologies of three different satellite cloud products, all based on passive sensors (CERES Edition 4.1 [EBAF4.1 and SYN4.1] and ISCCP–H), were evaluated against the CALIPSO-GOCCP (GOCCP) data, which are based on active sensors and, hence, were treated as the reference. Based on monthly averaged data (ocean + land), the passive sensors underestimated the total cloud cover (TCC) at lower (TCC < 50%), but, overall, they correlated well with the GOCCP data (r = 0.97). Over land, the passive sensors underestimated the TCC, with a mean difference (MD) of −2.6%, followed by the EBAF4.1 and ISCCP-H data with a MD of −2.0%. Over the ocean, the CERES-based products overestimated the TCC, but the SYN4.1 agreed better with the GOCCP data. The ISCCP-H data on average underestimated the TCC both over oceanic and continental regions. The annual mean TCC distribution over the globe revealed that the passive sensors generally underestimated the TCC over continental dry regions in northern Africa and southeastern South America as compared to the GOCCP, particularly over the summer hemisphere. The CERES datasets overestimated the TCC over the Pacific Islands between the Indian and eastern Pacific Oceans, particularly during the winter hemisphere. The ISCCP-H data also underestimated the TCC, particularly over the southern hemisphere near 60° S where the other datasets showed a significantly enhanced TCC. The ISCCP data also showed less TCC when compared against the GOCCP data over the tropical regions, particularly over the southern Pacific and Atlantic Oceans near the equator and also over the polar regions where the satellite retrieval using the passive sensors was generally much more challenging. The calculated global mean root meant square deviation value for the ISCCP-H data was 6%, a factor of 2 higher than the CERES datasets. Based on these results, overall, the EBAF4.1 agreed better with the GOCCP data.


2021 ◽  
Vol 2 (4) ◽  
pp. 1209-1224
Author(s):  
Cameron Bertossa ◽  
Peter Hitchcock ◽  
Arthur DeGaetano ◽  
Riwal Plougonven

Abstract. Bimodality and other types of non-Gaussianity arise in ensemble forecasts of the atmosphere as a result of nonlinear spread across ensemble members. In this paper, bimodality in 50-member ECMWF ENS-extended ensemble forecasts is identified and characterized. Forecasts of 2 m temperature are found to exhibit widespread bimodality well over a derived false-positive rate. In some regions bimodality occurs in excess of 30 % of forecasts, with the largest rates occurring during lead times of 2 to 3 weeks. Bimodality occurs more frequently in the winter hemisphere with indications of baroclinicity being a factor to its development. Additionally, bimodality is more common over the ocean, especially the polar oceans, which may indicate development caused by boundary conditions (such as sea ice). Near the equatorial region, bimodality remains common during either season and follows similar patterns to the Intertropical Convergence Zone (ITCZ), suggesting convection as a possible source for its development. Over some continental regions the modes of the forecasts are separated by up to 15 °C. The probability density for the modes can be up to 4 times greater than at the minimum between the modes, which lies near the ensemble mean. The widespread presence of such bimodality has potentially important implications for decision makers acting on these forecasts. Bimodality also has implications for assessing forecast skill and for statistical postprocessing: several commonly used skill-scoring methods and ensemble dressing methods are found to perform poorly in the presence of bimodality, suggesting the need for improvements in how non-Gaussian ensemble forecasts are evaluated.


2021 ◽  
Author(s):  
Cameron Drew Bertossa ◽  
Peter Hitchcock ◽  
Arthur DeGaetano ◽  
Riwal Plougonven

Abstract. Bimodality and other types of non-Gaussianity arise in ensemble forecasts of the atmosphere as a result of non-linear spread across ensemble members. In this paper, bimodality in 50-member ECMWF ENS-extended ensemble forecasts is identified and characterized. Forecasts of 2-meter temperature are found to exhibit widespread bimodality well over a derived false-positive rate. In some regions bimodality occurs in excess of 30 % of forecasts, with the largest rates occurring during lead times of 2 to 3 weeks. Bimodality occurs more frequently in the winter hemisphere with indications of baroclinicity being a factor to its development. Additionally, bimodality is more common over the ocean, especially the polar oceans, which may indicate development caused by boundary conditions (such as sea ice). Near the equatorial region, bimodality remains common during either season and follows similar patterns to the intertropical convergence zone (ITCZ) suggesting convection as a possible source for its development. Over some continental regions the modes of the forecasts are separated by up to 15 °C. The probability density for the modes can be up to four times greater than at the minimum between the modes, which lies near the ensemble mean. The widespread presence of such bimodality has potentially important implications for decision makers acting on these forecasts. Bimodality also has implications for assessing forecast skill and for statistical post-processing: several commonly used skill scoring methods and ensemble dressing methods are found to perform poorly in the presence of bimodality.


2021 ◽  
Vol 7 (1) ◽  
pp. 40-50
Author(s):  
Vladimir Mishin ◽  
Vilen Mishin ◽  
Marina Kurikalova

We continue to study the physical processes occurring during the August 17, 2001 magnetospheric storm by analyzing the dynamics of the intensity of field-aligned currents (FACs) in Iijima—Potemra Region 1 in the polar ionospheres of two hemispheres, using the modernized magnetogram inversion technique. The results obtained on the dynamics of the FAC asymmetry of two types (dawn–dusk and interhemispheric), as well as the previously obtained regularities in the behavior of Hall currents and polar cap boundaries depending on the large azimuthal component of the interplanetary magnetic field (IMF), observed during the storm, and the seasonal behavior of the conductivity are consistent with the open magnetosphere model and with satellite observations of auroras in two hemispheres. We have shown that the weakening of the asymmetry of two types in the FAC distribution during substorms in the storm under study occurs almost completely in the winter hemisphere and is much weaker in the summer one. We associate this phenomenon with the predominance of the effect of long-term exposure to the azimuthal IMF component in the sunlit polar ionosphere of the summer hemisphere over the substorm symmetrization effect of the night magnetosphere. A symmetrization effect of the polar cap and FACs, created by the solar wind pressure pulse at the end of the storm, is observed. We propose a qualitative explanation of this effect.


2021 ◽  
Vol 7 (1) ◽  
pp. 27-31
Author(s):  
Vladimir Mishin ◽  
Yuriy Karavaev ◽  
Sergey Lunyushkin ◽  
Yury Penskikh ◽  
Vyacheslav Kapustin

We continue to study the physical processes occurring during the August 17, 2001 magnetospheric storm by analyzing the dynamics of the intensity of field-aligned currents (FACs) in Iijima—Potemra Region 1 in the polar ionospheres of the two hemispheres, using the modernized magnetogram inversion technique. The results obtained on the dynamics of two types of FAC asymmetry (dawn-dusk and interhemispheric), as well as the previously obtained regularities in the behavior of Hall currents and the polar cap boundaries depending on the large azimuthal component of the interplanetary magnetic field (IMF), observed during the storm, and the seasonal behavior of the conductivity are consistent with the open magnetosphere model and with satellite observations of auroras in two hemispheres. We have shown that the weakening of the asymmetry of two types in the FAC distribution during substorms in the storm under study occurs almost completely in the winter hemisphere and is much weaker in the summer one. We associate this phenomenon with the predominance of the effect of long-term exposure to the azimuthal IMF component in the sunlit polar ionosphere of the summer hemisphere over the substorm symmetrization effect of the night magnetosphere. A symmetrization effect of the polar cap and FACs, created by the solar wind pressure pulse at the end of the storm, is observed. We propose a qualitative explanation of this effect.


2021 ◽  
Vol 7 (1) ◽  
pp. 34-39
Author(s):  
Vladimir Mishin ◽  
Yuriy Karavaev ◽  
Sergey Lunyushkin ◽  
Yury Penskikh ◽  
Vyacheslav Kapustin

We continue to study the physical processes occurring during the August 17, 2001 magnetospheric storm by analyzing the dynamics of the intensity of field-aligned currents (FACs) in Iijima—Potemra Region 1 in the polar ionospheres of the two hemispheres, using the modernized magnetogram inversion technique. The results obtained on the dynamics of two types of FAC asymmetry (dawn-dusk and interhemispheric), as well as the previously obtained regularities in the behavior of Hall currents and the polar cap boundaries depending on the large azimuthal component of the interplanetary magnetic field (IMF), observed during the storm, and the seasonal behavior of the conductivity are consistent with the open magnetosphere model and with satellite observations of auroras in two hemispheres. We have shown that the weakening of the asymmetry of two types in the FAC distribution during substorms in the storm under study occurs almost completely in the winter hemisphere and is much weaker in the summer one. We associate this phenomenon with the predominance of the effect of long-term exposure to the azimuthal IMF component in the sunlit polar ionosphere of the summer hemisphere over the substorm symmetrization effect of the night magnetosphere. A symmetrization effect of the polar cap and FACs, created by the solar wind pressure pulse at the end of the storm, is observed. We propose a qualitative explanation of this effect.


2021 ◽  
Vol 7 (1) ◽  
pp. 32-40
Author(s):  
Vladimir Mishin ◽  
Vilen Mishin ◽  
Marina Kurikalova

We continue to study the physical processes occurring during the August 17, 2001 magnetospheric storm by analyzing the dynamics of the intensity of field-aligned currents (FACs) in Iijima—Potemra Region 1 in the polar ionospheres of two hemispheres, using the modernized magnetogram inversion technique. The results obtained on the dynamics of the FAC asymmetry of two types (dawn–dusk and interhemispheric), as well as the previously obtained regularities in the behavior of Hall currents and polar cap boundaries depending on the large azimuthal component of the interplanetary magnetic field (IMF), observed during the storm, and the seasonal behavior of the conductivity are consistent with the open magnetosphere model and with satellite observations of auroras in two hemispheres. We have shown that the weakening of the asymmetry of two types in the FAC distribution during substorms in the storm under study occurs almost completely in the winter hemisphere and is much weaker in the summer one. We associate this phenomenon with the predominance of the effect of long-term exposure to the azimuthal IMF component in the sunlit polar ionosphere of the summer hemisphere over the substorm symmetrization effect of the night magnetosphere. A symmetrization effect of the polar cap and FACs, created by the solar wind pressure pulse at the end of the storm, is observed. We propose a qualitative explanation of this effect.


2021 ◽  
Author(s):  
Yangfan He ◽  
Hui Wang ◽  
Lühr Hermann ◽  
Kistler Lynn ◽  
Saikin Anthony ◽  
...  

&lt;p&gt;The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during&lt;br&gt;the magnetic storm of 21&amp;#8211;29 June 2015 was investigated using high-resolution magnetic field observations&lt;br&gt;from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric&lt;br&gt;EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during&lt;br&gt;the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral&lt;br&gt;regions occurred more frequently in the nighttime than during the day and exhibited less obvious&lt;br&gt;latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere&lt;br&gt;and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were&lt;br&gt;absent in the magnetosphere and ionosphere around the minimum SYM-H. During the early recovery&lt;br&gt;phase, He&lt;sup&gt;+ &lt;/sup&gt;band EMIC waves were observed in the ionosphere and magnetosphere. During the late&lt;br&gt;recovery phase, H&lt;sup&gt;+&lt;/sup&gt; band EMIC waves emerged in response to enhanced earthward convection during&lt;br&gt;substorms in the premidnight sector. The occurrence of EMIC waves in the noon sector was affected by&lt;br&gt;the intensity of substorm activity. Both ionospheric wave frequency and power were higher in the summer&lt;br&gt;hemisphere than in the winter hemisphere. Waves were confined to an MLT interval of less than 5 hr with a&lt;br&gt;duration of less than 186 min from coordinated observations. The results could provide additional insights&lt;br&gt;into the spatial characteristics and propagation features of EMIC waves during storm periods&lt;/p&gt;


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 620 ◽  
Author(s):  
David Jesch ◽  
Alexander S. Medvedev ◽  
Francesco Castellini ◽  
Erdal Yiğit ◽  
Paul Hartogh

The upper atmosphere of Mars is constantly perturbed by small-scale gravity waves propagating from below. As gravity waves strongly affect the large-scale dynamics and thermal state, constraining their statistical characteristics is of great importance for modeling the atmospheric circulation. We present a new data set of density perturbation amplitudes derived from accelerometer measurements during aerobraking of the European Space Agency’s Trace Gas Orbiter. The obtained data set presents features found by three previous orbiters: the lower thermosphere polar warming in the winter hemisphere, and the lack of links between gravity wave activity and topography. In addition, the orbits allowed for demonstrating a very weak diurnal variability in wave activity at high latitudes of the southern winter hemisphere for the first time. The estimated vertical damping rates of gravity waves agree well with theoretical predictions. No clear anticorrelation between perturbation amplitudes and the background temperature has been found. This indicates differences in dissipation mechanisms of gravity waves in the lower and upper thermosphere.


2019 ◽  
Vol 32 (21) ◽  
pp. 7453-7467 ◽  
Author(s):  
Cristina Peña-Ortiz ◽  
Elisa Manzini ◽  
Marco A. Giorgetta

Abstract The impact of tropical deep convection on southern winter stationary waves and its modulation by the quasi-biennial oscillation (QBO) have been investigated in a long (210 year) climate model simulation and in ERA-Interim reanalysis data for the period 1979–2018. Model results reveal that tropical deep convection over the region of its climatological maximum modulates high-latitude stationary planetary waves in the southern winter hemisphere, corroborating the dominant role of tropical thermal forcing in the generation of these waves. In the tropics, deep convection enhancement leads to wavenumber-1 eddy anomalies that reinforce the climatological Rossby–Kelvin wave couplet. The Rossby wave propagates toward the extratropical southern winter hemisphere and upward through the winter stratosphere reinforcing wavenumber-1 climatological eddies. As a consequence, stronger tropical deep convection is related to greater upward wave propagation and, consequently, to a stronger Brewer–Dobson circulation and a warmer polar winter stratosphere. This linkage between tropical deep convection and the Southern Hemisphere (SH) winter polar vortex is also found in the ERA-Interim reanalysis. Furthermore, model results indicate that the enhancement of deep convection observed during the easterly phase of the QBO (E-QBO) gives rise to a similar modulation of the southern winter extratropical stratosphere, which suggests that the QBO modulation of convection plays a fundamental role in the transmission of the QBO signature to the southern stratosphere during the austral winter, revealing a new pathway for the QBO–SH polar vortex connection. ERA-Interim corroborates a QBO modulation of deep convection; however, the shorter data record does not allow us to assess its possible impact on the SH polar vortex.


Sign in / Sign up

Export Citation Format

Share Document