A superposed epoch analysis of geomagnetic storms

1994 ◽  
Vol 12 (7) ◽  
pp. 612-624 ◽  
Author(s):  
J. R. Taylor ◽  
M. Lester ◽  
T. K. Yeoman

Abstract. A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index). Storms have also been classified here as either storm sudden commencements (SSCs) or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement). The prevailing solar wind conditions defined by the parameters solar wind speed (vsw), density (ρsw) and pressure (Psw) and the total field and the components of the interplanetary magnetic field (IMF) during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h), but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h) the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

2009 ◽  
Vol 27 (11) ◽  
pp. 4281-4291 ◽  
Author(s):  
N. Partamies ◽  
T. I. Pulkkinen ◽  
R. L. McPherron ◽  
K. McWilliams ◽  
C. R. Bryant ◽  
...  

Abstract. This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC) intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential), particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to) the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY). Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations) during geomagnetically active conditions.


2018 ◽  
Vol 8 ◽  
pp. A18 ◽  
Author(s):  
Manuela Temmer ◽  
Jürgen Hinterreiter ◽  
Martin A. Reiss

We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
V. Vasanth ◽  
S. Umapathy

A detailed investigation on geoeffectiveness of CMEs associated with DH-type-II bursts observed during 1997–2008 is presented. The collected sample events are divided into two groups based on their association with CMEs related to geomagnetic storms Dst ≤−50 nT, namely, (i) geoeffective events and (ii) nongeoeffective events. We found that the geoeffective events have high starting frequency, low ending frequency, long duration, wider bandwidth, energetic flares, and CMEs than nongeoeffective events. The geoeffective events are found to have intense geomagnetic storm with mean Dst index (−150 nT). There exists good correlation between the properties of CMEs and flares for geoeffective events, while no clear correlation exists for nongeoeffective events. There exists a weak correlation for geoeffective events between (i) CME speed and Dst index (R=-0.51) and good correlation between (i) CME speed and solar wind speed (R=0.60), (ii) Dst index and solar wind speed (R=-0.64), and (iii) Dst index and southward magnetic field component (Bz) (R=0.80). From our study we conclude that the intense and long duration southward magnetic field component (Bz) and fast solar wind speed are responsible for geomagnetic storms, and the geomagnetic storms weakly depend on CME speed. About 22% (50/230) of the DH-type-II bursts are associated with geomagnetic storms. Therefore the DH-type-II bursts associated with energetic flares and CMEs are good indicator of geomagnetic storms.


2018 ◽  
Vol 13 (S340) ◽  
pp. 163-164
Author(s):  
Veena Choithani ◽  
Rajmal Jain ◽  
Duggirala Pallamraju

AbstractWe study 30 solar flare events associated with coronal mass ejections (CMEs) that produced geomagnetic storms as measured in Dst index. Our study reveals that the magnitude of Dst index is significantly associated with maximum solar wind speed, peak of Bz component of the IMF and the product of peak Bz and solar wind speed (minimum and maximum). From our investigations, it can be inferred that CMEs travel with higher speed in the beginning and their speed reduces as they reach L1 location.


2018 ◽  
Vol 13 (S340) ◽  
pp. 67-68
Author(s):  
K. J. Suji ◽  
P. R. Prince

AbstractSuperposed epoch analysis (SPEA) is commonly used to determine some basic structure in a collection of geophysical time series. The present study tries to analyze ionospheric Joule heating response at high latitudes, to the prevailing solar wind and IMF conditions on the basis of SPEA. Major geomagnetic storms (CME driven) over three consecutive solar cycles (SC 22, 23 and 24) have been selected. Ascending phase, solar maximum, and declining phase are investigated separately, for each solar cycle, to find out crucial controlling parameters for the generation of high-latitude ionospheric Joule heating. SPEA results show that, IMF parameters such as IMF By, IMF Bz, IMF clock angle and solar wind parameters such as dynamic pressure and proton density influence Joule heating production rate significantly. Meanwhile, the relentlessness of the other parameters such as IMFBt and solar wind bulk speed show that they have poor impact on Joule heating.


Sign in / Sign up

Export Citation Format

Share Document