A Secure LFSR Based Random Measurement Matrix for Compressive Sensing

2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Sudhish N. George ◽  
Deepthi P. Pattathil
Frequenz ◽  
2014 ◽  
Vol 68 (11-12) ◽  
Author(s):  
Guangjie Xu ◽  
Huali Wang ◽  
Lei Sun ◽  
Weijun Zeng ◽  
Qingguo Wang

AbstractCirculant measurement matrices constructed by partial cyclically shifts of one generating sequence, are easier to be implemented in hardware than widely used random measurement matrices; however, the diminishment of randomness makes it more sensitive to signal noise. Selecting a deterministic sequence with optimal periodic autocorrelation property (PACP) as generating sequence, would enhance the noise robustness of circulant measurement matrix, but this kind of deterministic circulant matrices only exists in the fixed periodic length. Actually, the selection of generating sequence doesn't affect the compressive performance of circulant measurement matrix but the subspace energy in spectrally sparse signals. Sparse circulant matrices, whose generating sequence is a sparse sequence, could keep the energy balance of subspaces and have similar noise robustness to deterministic circulant matrices. In addition, sparse circulant matrices have no restriction on length and are more suitable for the compressed sampling of spectrally sparse signals at arbitrary dimensionality.


2019 ◽  
Vol 9 (21) ◽  
pp. 4596 ◽  
Author(s):  
Tongjing Sun ◽  
Ji Li ◽  
Philippe Blondel

Compressive sensing can guarantee the recovery accuracy of suitably constrained signals by using sampling rates much lower than the Nyquist limit. This is a leap from signal sampling to information sampling. The measurement matrix is key to implementation but limited in the acquisition systems. This article presents the critical elements of the direct under-sampling—compressive sensing (DUS–CS) method, constructing the under-sampling measurement matrix, combined with a priori information sparse representation and reconstruction, and we show how it can be physically implemented using dedicated hardware. To go beyond the Nyquist constraints, we show how to design and adjust the sampling time of the A/D circuit and how to achieve low-speed random non-uniform direct under-sampling. We applied our method to data measured with different compression ratios (volume ratios of collected data to original data). It is shown that DUS-CS works well when the SNR is 3 dB, 0 dB, −3 dB, and −5 dB and the compression ratio is 50%, 20%, and 10%, and this is validated with both simulation and actual measurements. The method we propose provides an effective way for compressed sensing theory to move toward practical field applications that use underwater echo signals.


Optik ◽  
2020 ◽  
Vol 220 ◽  
pp. 164783
Author(s):  
Qi Qin ◽  
Yan Liu ◽  
Zhongwei Tan ◽  
Muguang Wang ◽  
Fengping Yan

2018 ◽  
Vol 13 ◽  
pp. 174830181879151
Author(s):  
Qiang Yang ◽  
Huajun Wang

To solve the problem of high time and space complexity of traditional image fusion algorithms, this paper elaborates the framework of image fusion algorithm based on compressive sensing theory. A new image fusion algorithm based on improved K-singular value decomposition and Hadamard measurement matrix is proposed. This proposed algorithm only acts on a small amount of measurement data after compressive sensing sampling, which greatly reduces the number of pixels involved in the fusion and improves the time and space complexity of fusion. In the fusion experiments of full-color image with multispectral image, infrared image with visible light image, as well as multispectral image with full-color image, this proposed algorithm achieved good experimental results in the evaluation parameters of information entropy, standard deviation, average gradient, and mutual information.


2015 ◽  
Vol 9 (11) ◽  
pp. 993-1001 ◽  
Author(s):  
Haiying Yuan ◽  
Hongying Song ◽  
Xun Sun ◽  
Kun Guo ◽  
Zijian Ju

IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 5327-5342 ◽  
Author(s):  
Sanjeev Sharma ◽  
Anubha Gupta ◽  
Vimal Bhatia

Sign in / Sign up

Export Citation Format

Share Document