scholarly journals Multithreaded computing in evolutionary design and in artificial life simulations

2016 ◽  
Vol 73 (5) ◽  
pp. 2214-2228 ◽  
Author(s):  
Maciej Komosinski ◽  
Szymon Ulatowski
2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Roterman Irena ◽  
Konieczny Leszek

AbstractThe presented work discusses some evolutionary phenomena underlining the complexity of organism creation and surprisingly the short evolutionary time of this process in particular. Uncommonness of this process ensued from the necessary simultaneous combining of highly complicated biological mechanisms, of which some were generated independently before the direct evolutionary demand. This in conclusion points to still not fully understood biological program ensuring superiority of the permanent evolutionary progress over effects of purely random mutational changes as the driving mechanism in evolution.


2015 ◽  
Vol 1 (1) ◽  
pp. 37-58 ◽  
Author(s):  
Michela Antonelli ◽  
Pietro Ducange ◽  
Beatrice Lazzerini ◽  
Francesco Marcelloni

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Valente

AbstractImitating the transition from inanimate to living matter is a longstanding challenge. Artificial life has achieved computer programs that self-replicate, mutate, compete and evolve, but lacks self-organized hardwares akin to the self-assembly of the first living cells. Nonequilibrium thermodynamics has achieved lifelike self-organization in diverse physical systems, but has not yet met the open-ended evolution of living organisms. Here, I look for the emergence of an artificial-life code in a nonequilibrium physical system undergoing self-organization. I devise a toy model where the onset of self-replication of a quantum artificial organism (a chain of lambda systems) is owing to single-photon pulses added to a zero-temperature environment. I find that spontaneous mutations during self-replication are unavoidable in this model, due to rare but finite absorption of off-resonant photons. I also show that the replication probability is proportional to the absorbed work from the photon, thereby fulfilling a dissipative adaptation (a thermodynamic mechanism underlying lifelike self-organization). These results hint at self-replication as the scenario where dissipative adaptation (pointing towards convergence) coexists with open-ended evolution (pointing towards divergence).


AI & Society ◽  
2021 ◽  
Author(s):  
Suzanne Anker

AbstractThis paper addresses three aspects of Bio Art: iconography, artificial life, and wetware. The development of models for innovation require hybrid practices which generate knowledge through epistemic experimental practices. The intersection of art and the biological sciences contain both scientific data as well as the visualization of its cultural imagination. In the Bio Art Lab at the School of Visual Arts, artists use the tools of science to make art.


Sign in / Sign up

Export Citation Format

Share Document