Analysis of Pore Network in Three-dimensional (3D) Grain Bulks Using X-ray CT Images

2007 ◽  
Vol 73 (3) ◽  
pp. 319-332 ◽  
Author(s):  
Sureshraja Neethirajan ◽  
Digvir S. Jayas
Author(s):  
Kenichi Katono ◽  
Jun Nukaga ◽  
Takuji Nagayoshi ◽  
Kenichi Yasuda

We have been developing a void fraction distribution measurement technique using the three-dimensional (3D) time-averaged X-ray CT (computed tomography) system to understand two-phase flow behavior inside a fuel assembly for BWR (boiling water reactor) thermal hydraulic conditions of 7.2 MPa and 288 °C. Unlike CT images of a normal standstill object, we can obtain 3D CT images that are reconstructed from time-averaged X-ray projection data of the intermittent two-phase flow. We measured the 3D void fraction distribution in a vertical square (5 × 5) rod array that simulated a BWR fuel assembly in the air-water test. From the 3D time-averaged CT images, we confirmed that the void fraction at the center part of the channel box was higher than that near the channel box wall, and the local void fraction at the central region of a subchannel was higher than that at the gap region of the subchannel. A comparison of the volume-averaged void fractions evaluated by the developed X-ray CT system with those evaluated by a differential pressure transducer in a void fraction range from 0.05 to 0.40 showed satisfactory agreement within a difference of 0.03.


2003 ◽  
Vol 22 (8) ◽  
pp. 940-950 ◽  
Author(s):  
D. Aykac ◽  
E.A. Hoffman ◽  
G. McLennan ◽  
J.M. Reinhardt

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bartłomiej Gackiewicz ◽  
Krzysztof Lamorski ◽  
Cezary Sławiński ◽  
Shao-Yiu Hsu ◽  
Liang-Cheng Chang

AbstractDifferent modeling techniques can be used to estimate the saturated conductivity of a porous medium based on computed tomography (CT) images. In this research, two methods are intercompared: direct modeling using the Navier–Stokes (NS) approach and simplified geometry pore network (PN) modeling. Both modeling approaches rely on pore media geometry which was determined using an X-ray CT scans with voxel size 2 μm. An estimate of the saturated conductivity using both methods was calculated for 20 samples prepared from sand with diverse particle size distributions. PN-estimated saturated conductivity was found to be statistically equivalent to the NS-determined saturated conductivity values. The average value of the ratio of the PN-determined conductivity to the NS-determined conductivity (KsatPN/NS) was equal to 0.927. In addition to the NS and PN modeling approaches, a simple Kozeny-Carman (KC) equation-based estimate was made. The comparison showed that the KC estimate overestimated saturated conductivity by more than double (2.624) the NS estimate. A relationship was observed between the porous media specific surface and the KsatPN/NS ratio. The tortuosity of analyzed samples was estimated, the correlation between the porous media tortuosity and the specific surface of the samples was observed. In case of NS modelling approach the difference between pore media total porosity and total porosity of meshes, which were lower, generated for simulations were observed. The average value of the differences between them was 0.01. The method of NS saturated conductivity error estimation related to pore media porosity underestimation by numerical meshes was proposed. The error was on the average 10% for analyzed samples. The minimum value of the error was 4.6% and maximum 19%.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shota Teramoto ◽  
Takanari Tanabata ◽  
Yusaku Uga

Abstract Background The root distribution in the soil is one of the elements that comprise the root system architecture (RSA). In monocots, RSA comprises radicle and crown roots, each of which can be basically represented by a single curve with lateral root branches or approximated using a polyline. Moreover, RSA vectorization (polyline conversion) is useful for RSA phenotyping. However, a robust software that can enable RSA vectorization while using noisy three-dimensional (3D) volumes is unavailable. Results We developed RSAtrace3D, which is a robust 3D RSA vectorization software for monocot RSA phenotyping. It manages the single root (radicle or crown root) as a polyline (a vector), and the set of the polylines represents the entire RSA. RSAtrace3D vectorizes root segments between the two ends of a single root. By utilizing several base points on the root, RSAtrace3D suits noisy images if it is difficult to vectorize it using only two end nodes of the root. Additionally, by employing a simple tracking algorithm that uses the center of gravity (COG) of the root voxels to determine the tracking direction, RSAtrace3D efficiently vectorizes the roots. Thus, RSAtrace3D represents the single root shape more precisely than straight lines or spline curves. As a case study, rice (Oryza sativa) RSA was vectorized from X-ray computed tomography (CT) images, and RSA traits were calculated. In addition, varietal differences in RSA traits were observed. The vector data were 32,000 times more compact than raw X-ray CT images. Therefore, this makes it easier to share data and perform re-analyses. For example, using data from previously conducted studies. For monocot plants, the vectorization and phenotyping algorithm are extendable and suitable for numerous applications. Conclusions RSAtrace3D is an RSA vectorization software for 3D RSA phenotyping for monocots. Owing to the high expandability of the RSA vectorization and phenotyping algorithm, RSAtrace3D can be applied not only to rice in X-ray CT images but also to other monocots in various 3D images. Since this software is written in Python language, it can be easily modified and will be extensively applied by researchers in this field.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137205 ◽  
Author(s):  
Simona Hapca ◽  
Philippe C. Baveye ◽  
Clare Wilson ◽  
Richard Murray Lark ◽  
Wilfred Otten

Sign in / Sign up

Export Citation Format

Share Document