Immiscible Displacement of a Wetting Fluid by a Non-wetting One at High Capillary Number in a Micro-model Containing a Single Fracture

2012 ◽  
Vol 94 (1) ◽  
pp. 289-301 ◽  
Author(s):  
Ehsan Kamari ◽  
Davood Rashtchian ◽  
Seyed Reza Shadizadeh
Author(s):  
Eslam Ezzatneshan ◽  
Reza Goharimehr

In the present study, a pore-scale multicomponent lattice Boltzmann method (LBM) is employed for the investigation of the immiscible-phase fluid displacement in a homogeneous porous medium. The viscous fingering and the stable displacement regimes of the invading fluid in the medium are quantified which is beneficial for predicting flow patterns in pore-scale structures, where an experimental study is extremely difficult. Herein, the Shan-Chen (S-C) model is incorporated with an appropriate collision model for computing the interparticle interaction between the immiscible fluids and the interfacial dynamics. Firstly, the computational technique is validated by a comparison of the present results obtained for different benchmark flow problems with those reported in the literature. Then, the penetration of an invading fluid into the porous medium is studied at different flow conditions. The effect of the capillary number (Ca), dynamic viscosity ratio (M), and the surface wettability defined by the contact angle (θ) are investigated on the flow regimes and characteristics. The obtained results show that for M<1, the viscous fingering regime appears by driving the invading fluid through the pore structures due to the viscous force and capillary force. However, by increasing the dynamic viscosity ratio and the capillary number, the invading fluid penetrates even in smaller pores and the stable displacement regime occurs. By the increment of the capillary number, the pressure difference between the two sides of the porous medium increases, so that the pressure drop Δp along with the domain at θ=40∘ is more than that of computed for θ=80∘. The present study shows that the value of wetting fluid saturation Sw at θ=40∘ is larger than its value computed with θ=80∘ that is due to the more tendency of the hydrophilic medium to absorb the wetting fluid at θ=40∘. Also, it is found that the magnitude of Sw computed for both the contact angles is decreased by the increment of the viscosity ratio from Log(M)=−1 to 1. The present study demonstrates that the S-C LBM is an efficient and accurate computational method to quantitatively estimate the flow characteristics and interfacial dynamics through the porous medium.


Author(s):  
Christos D. Tsakiroglou

The steady-state gas, k rg, and water, k rw, relative permeabilities are measured with experiments of the simultaneous flow, at varying flow rates, of nitrogen and brine (aqueous solution of NaCl brine) on a homogeneous sand column. Two differential pressure transducers are used to measure the pressure drop across each phase, and six ring electrodes are used to measure the electrical resistance across five segments of the sand column. The electrical resistances are converted to water saturations with the aid of the Archie equation for resistivity index. Both k rw and k rg are regarded as power functions of water, Caw, and gas, Cag, capillary numbers, the exponents of which are estimated with non-linear fitting to the experimental datasets. An analogous power law is used to express water saturation as a function of Caw, and Cag. In agreement to earlier studies, it seems that the two-phase flow regime is dominated by connected pathway flow and disconnected ganglia dynamics for the wetting fluid (brine), and only disconnected ganglia dynamics for the non-wetting fluid (gas). The water saturation is insensitive to changes of water and gas capillary numbers. Each relative permeability is affected by both water and gas capillary numbers, with the water relative permeability being a strong function of water capillary number and gas relative permeability depending strongly on the gas capillary number. The slope of the water relative permeability curve for a gas/water system is much higher than that of an oil/water system, and the slope of the gas relative permeability is lower than that of an oil/water system.


1986 ◽  
Vol 164 ◽  
pp. 305-336 ◽  
Author(s):  
Madalena M. Dias ◽  
Alkiviades C. Payatakes

A theoretical simulator of immiscible displacement of a non-wetting fluid by a wetting one in a random porous medium is developed. The porous medium is modelled as a network of randomly sized unit cells of the constricted-tube type. Under creeping-flow conditions the problem is reduced to a system of linear equations, the solution of which gives the instantaneous pressures at the nodes and the corresponding flowrates through the unit cells. The pattern and rate of the displacement are obtained by assuming quasi-static flow and taking small time increments. The porous medium adopted for the simulations is a sandpack with porosity 0.395 and grain sizes in the range from 74 to 148 μrn. The effects of the capillary number, Ca, and the viscosity ratio, κ = μo/μw, are studied. The results confirm the importance of the capillary number for displacement, but they also show that for moderate and high Ca values the role of κ is pivotal. When the viscosity ratio is favourable (κ < 1), the microdisplacement efficiency begins to increase rapidly with increasing capillary number for Ca > 10−5, and becomes excellent as Ca → 10−3. On the other hand, when the viscosity ratio is unfavourable (κ > 1), the microdisplacement efficiency begins to improve only for Ca values larger than, say, 5 × 10−4, and is substantially inferior to that achieved with κ < 1 and the same Ca value. In addition to the residual saturation of the non-wetting fluid, the simulator predicts the time required for the displacement, the pattern of the transition zone, the size distribution of the entrapped ganglia, and the acceptance fraction as functions of Ca, κ, and the porous-medium geometry.


2008 ◽  
Vol 19 (10) ◽  
pp. 1515-1528
Author(s):  
FATEMEH EBRAHIMI

Site invasion percolation (IP) processes are combined with bond percolation model, to study the effects of size restriction on low capillary number immiscible displacement in heterogeneous nanoporous media. Both cases of compressible (NTIP) and incompressible defender fluid (TIP) are considered. It is found that in site IP the value of mass uptake increases with the size of invader particles, if the latter is not greater than a critical value. This occurs when the accessible porosity of the medium decreases as the size of fluid particles increases. We also investigate the effect of nanopore's concentration on the mass and the anisotropy of sample spanning cluster as well as the critical exponent of trap numbers.


2017 ◽  
Vol 20 (5) ◽  
pp. 417-433 ◽  
Author(s):  
Ali Salehi-Shabestari ◽  
Mehrdad Raisee ◽  
Kayvan Sadeghy

Author(s):  
Jan Dash ◽  
Xipei Yang ◽  
Mario Bondioli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document