Network models for two-phase flow in porous media Part 1. Immiscible microdisplacement of non-wetting fluids

1986 ◽  
Vol 164 ◽  
pp. 305-336 ◽  
Author(s):  
Madalena M. Dias ◽  
Alkiviades C. Payatakes

A theoretical simulator of immiscible displacement of a non-wetting fluid by a wetting one in a random porous medium is developed. The porous medium is modelled as a network of randomly sized unit cells of the constricted-tube type. Under creeping-flow conditions the problem is reduced to a system of linear equations, the solution of which gives the instantaneous pressures at the nodes and the corresponding flowrates through the unit cells. The pattern and rate of the displacement are obtained by assuming quasi-static flow and taking small time increments. The porous medium adopted for the simulations is a sandpack with porosity 0.395 and grain sizes in the range from 74 to 148 μrn. The effects of the capillary number, Ca, and the viscosity ratio, κ = μo/μw, are studied. The results confirm the importance of the capillary number for displacement, but they also show that for moderate and high Ca values the role of κ is pivotal. When the viscosity ratio is favourable (κ < 1), the microdisplacement efficiency begins to increase rapidly with increasing capillary number for Ca > 10−5, and becomes excellent as Ca → 10−3. On the other hand, when the viscosity ratio is unfavourable (κ > 1), the microdisplacement efficiency begins to improve only for Ca values larger than, say, 5 × 10−4, and is substantially inferior to that achieved with κ < 1 and the same Ca value. In addition to the residual saturation of the non-wetting fluid, the simulator predicts the time required for the displacement, the pattern of the transition zone, the size distribution of the entrapped ganglia, and the acceptance fraction as functions of Ca, κ, and the porous-medium geometry.

1986 ◽  
Vol 164 ◽  
pp. 337-358 ◽  
Author(s):  
Madalena M. Dias ◽  
Alkiviades C. Payatakes

The behaviour of non-wetting ganglia undergoing immiscible displacement in a porous medium is studied with the help of a theoretical simulator. The porous medium is represented by a network of randomly sized unit cells of the constricted-tube type. The fluid of a non-wetting ganglion is in contact with the wetting fluid at menisci which are assumed to be spherical cups. The flow in every constricted unit cell occupied by a single fluid is modelled as flow in a sinusoidal tube. The flow in every unit cell that contains a meniscus and portions of both fluids is treated with a combination of a Washburn-type analysis and a lubrication-theory approximation. The flow problem is thus reduced to a system of linear equations the solution of which gives the instantaneous pressures on the nodes, the flowrates through the unit cells, and the velocities of the menisci. The motion of a ganglion is determined by assuming quasi-static flow, taking a small time increment, updating the positions of the menisci, and iterating. The behaviour of solitary ganglia is studied under conditions of quasi-static displacement (Ca slightly larger than critical), as well as dynamic displacement (Ca substantially larger than critical). Shape evolution, rate of flow, mode of break-up, and stranding are examined. The stranding and break-up coefficients are determined as functions of the capillary number and the ganglion size for a 100 × 200 sandpack. The dependence of the average ganglion velocity on ganglion size, capillary number, viscosity ratio and dynamic contact angle is examined for the simple case of motion between straight rows of spheres. It is found, among other things, that when μo < μw the velocity of ganglia can be substantially larger than that of the displacing fluid.


Author(s):  
Eslam Ezzatneshan ◽  
Reza Goharimehr

In the present study, a pore-scale multicomponent lattice Boltzmann method (LBM) is employed for the investigation of the immiscible-phase fluid displacement in a homogeneous porous medium. The viscous fingering and the stable displacement regimes of the invading fluid in the medium are quantified which is beneficial for predicting flow patterns in pore-scale structures, where an experimental study is extremely difficult. Herein, the Shan-Chen (S-C) model is incorporated with an appropriate collision model for computing the interparticle interaction between the immiscible fluids and the interfacial dynamics. Firstly, the computational technique is validated by a comparison of the present results obtained for different benchmark flow problems with those reported in the literature. Then, the penetration of an invading fluid into the porous medium is studied at different flow conditions. The effect of the capillary number (Ca), dynamic viscosity ratio (M), and the surface wettability defined by the contact angle (θ) are investigated on the flow regimes and characteristics. The obtained results show that for M<1, the viscous fingering regime appears by driving the invading fluid through the pore structures due to the viscous force and capillary force. However, by increasing the dynamic viscosity ratio and the capillary number, the invading fluid penetrates even in smaller pores and the stable displacement regime occurs. By the increment of the capillary number, the pressure difference between the two sides of the porous medium increases, so that the pressure drop Δp along with the domain at θ=40∘ is more than that of computed for θ=80∘. The present study shows that the value of wetting fluid saturation Sw at θ=40∘ is larger than its value computed with θ=80∘ that is due to the more tendency of the hydrophilic medium to absorb the wetting fluid at θ=40∘. Also, it is found that the magnitude of Sw computed for both the contact angles is decreased by the increment of the viscosity ratio from Log(M)=−1 to 1. The present study demonstrates that the S-C LBM is an efficient and accurate computational method to quantitatively estimate the flow characteristics and interfacial dynamics through the porous medium.


2010 ◽  
Vol 86 (1) ◽  
pp. 243-259 ◽  
Author(s):  
M. Ferer ◽  
Shelley L. Anna ◽  
Paul Tortora ◽  
J. R. Kadambi ◽  
M. Oliver ◽  
...  

2011 ◽  
Vol 678 ◽  
pp. 248-270 ◽  
Author(s):  
MADELEINE J. GOLDING ◽  
JEROME A. NEUFELD ◽  
MARC A. HESSE ◽  
HERBERT E. HUPPERT

We develop a model describing the buoyancy-driven propagation of two-phase gravity currents, motivated by problems in groundwater hydrology and geological storage of carbon dioxide (CO2). In these settings, fluid invades a porous medium saturated with an immiscible second fluid of different density and viscosity. The action of capillary forces in the porous medium results in spatial variations of the saturation of the two fluids. Here, we consider the propagation of fluid in a semi-infinite porous medium across a horizontal, impermeable boundary. In such systems, once the aspect ratio is large, fluid flow is mainly horizontal and the local saturation is determined by the vertical balance between capillary and gravitational forces. Gradients in the hydrostatic pressure along the current drive fluid flow in proportion to the saturation-dependent relative permeabilities, thus determining the shape and dynamics of two-phase currents. The resulting two-phase gravity current model is attractive because the formalism captures the essential macroscopic physics of multiphase flow in porous media. Residual trapping of CO2 by capillary forces is one of the key mechanisms that can permanently immobilize CO2 in the societally important example of geological CO2 sequestration. The magnitude of residual trapping is set by the areal extent and saturation distribution within the current, both of which are predicted by the two-phase gravity current model. Hence the magnitude of residual trapping during the post-injection buoyant rise of CO2 can be estimated quantitatively. We show that residual trapping increases in the presence of a capillary fringe, despite the decrease in average saturation.


Author(s):  
Aniket S. Ambekar ◽  
Vivek V. Buwa ◽  
Jyoti Phirani

Immiscible displacement of a non-wetting fluid by a wetting fluid is important for many fields for example, biomedical devices, paper micro-fluidics, oil reservoirs and water aquifers. In a multi-layered porous medium the displacement velocity and relative position of the layers with respect to each other is significant in determining the flow paths of the fluids. Earlier studies on two-layered porous medium indicate presence of different flow regimes in every layer depending upon the velocity. However, the effect of relative positioning of these layers in different flow regimes is still unknown. In the present work we experimentally show that at low velocity, a capillary regime is developed i.e. the wetting fluid front leads in the least permeable layer, while at high velocity the wetting fluid front leads in the highest permeability layer. At all flow rates, the least permeable layer is found to draw fluid from the high permeability layer due to capillary suction. We also show the effect of relative placement of the layers on the interphase dynamics.


2021 ◽  
Author(s):  
Peter Mora ◽  
Gabriele Morra ◽  
Dave Yuen ◽  
Ruben Juanes

Abstract We present a suite of numerical simulations of two-phase flow through a 2D model of a porous medium using the Rothman-Keller Lattice Boltzmann Method to study the effect of viscous fingering on the recovery factor as a function of viscosity ratio and wetting angle. This suite involves simulations spanning wetting angles from non-wetting to perfectly wetting and viscosity ratios spanning from 0.01 through 100. Each simulation is initialized with a porous model that is fully saturated with a "blue" fluid, and a "red" fluid is then injected from the left. The simulation parameters are set such that the capillary number is 10, well above the threshold for viscous fingering, and with a Reynolds number of 0.2 which is well below the transition to turbulence and small enough such that inertial effects are negligible. Each simulation involves the "red" fluid being injected from the left at a constant rate such in accord with the specified capillary number and Reynolds number until the red fluid breaks through the right side of the model. As expected, the dominant effect is the viscosity ratio, with narrow tendrils (viscous fingering) occurring for small viscosity ratios with M ≪ 1, and an almost linear front occurring for viscosity ratios above unity. The wetting angle is found to have a more subtle and complicated role. For low wetting angles (highly wetting injected fluids), the finger morphology is more rounded whereas for high wetting angles, the fingers become narrow. The effect of wettability on saturation (recovery factor) is more complex than the expected increase in recovery factor as the wetting angle is decreased, with specific wetting angles at certain viscosity ratios that optimize yield. This complex phase space landscape with hills, valleys and ridges suggests the dynamics of flow has a complex relationship with the geometry of the medium and hydrodynamical parameters, and hence recovery factors. This kind of behavior potentially has immense significance to Enhanced Oil Recovery (EOR). For the case of low viscosity ratio, the flow after breakthrough is localized mainly through narrow fingers but these evolve and broaden and the saturation continues to increase albeit at a reduced rate. For this reason, the recovery factor continues to increase after breakthrough and approaches over 90% after 10 times the breakthrough time.


1969 ◽  
Vol 9 (02) ◽  
pp. 221-231 ◽  
Author(s):  
R. Ehrlich ◽  
F.E. Crane

Abstract A consolidated porous medium is mathematically modeled by networks of irregularly shaped interconnected pore channels. Mechanisms are described that form residual saturations during immiscible displacement both by entire pore channels being bypassed and by fluids being isolated by the movement of an interface within individual pore channels. This latter mechanism is shown to depend strongly on pore channel irregularity. Together, these mechanisms provide an explanation for the drainage-imbibition-hysteresis effect. The calculation of steady-state relative permeabilities, based on a pore-size distribution permeabilities, based on a pore-size distribution obtained from a Berea sandstone, is described. These relative permeability curves agree qualitatively with curves that are generally accepted to be typical for highly consolidated materials. In situations where interfacial effects predominate over viscous and gravitational effects, the following conclusions are reached.Relative permeability at a given saturation is everywhere independent of flow rate.Relative permeability is independent of viscosity ratio everywhere except at very low values of wetting phase relative permeability.Irreducible wetting-phase saturation following steady-state drainage decreases with increasing ratio of nonwetting- to wetting-phase viscosity.Irreducible wetting-phase saturation following unsteady-state drainage is lower than for steady-state drainage.Irreducible nonwetting-phase saturation following imbibition is independent of viscosity ratio, whether or not the imbibition is carried out under steady- or unsteady-state conditions. Experiments qualitatively verify the conclusions regarding unsteady-state residual wetting-phase saturation. Implications of these conclusions are discussed. Introduction Natural and artificial porous materials are generally composed of matrix substance brought together in a more or less random manner. This leads to the creation of a network of interconnected pore spaces of highly irregular shape. Since the pore spaces of highly irregular shape. Since the geometry of such a network is impossible to describe, we can never obtain a complete description of its flow behavior. We can, however, abstract those properties of the porous medium pertinent to the type of flow under consideration, and thus obtain an adequate description of that flow. Thus, the Kozeny-Carmen equation, by considering a porous medium as a bundle of noninterconnecting capillary tubes, provides an adequate description of single-phase provides an adequate description of single-phase flow. With the addition of a saturation-dependent tortuosity parameter in two-phase flow to account for flow path elongation, the Kozeny-Carmen equation has been used to predict relative permeabilities for the displacement of a wetting permeabilities for the displacement of a wetting liquid by a gas. It has long been recognized that relative permeability depends not only on saturation but permeability depends not only on saturation but also on saturation history as well. Naar and Henderson described a mathematical model in which differences between drainage and imbibition behavior are explained in terms of a bypassing mechanism by which oil is trapped during imbibition. Fatt proposed a model for a porous medium that consisted of regular networks of cylindrical tubes of randomly distributed radii. From this he calculated the drainage relative permeability curves. Moore and Slobod, Rose and Witherspoon, and Rose and Cleary each considered flow in a pore doublet (a parallel arrangement of a small and pore doublet (a parallel arrangement of a small and large diameter cylindrical capillary tube). They concluded that, because of the different rates of flow in each tube, trapping would occur in one of the tubes; the extent of which would depend upon viscosity ratio and capillary pressure. SPEJ p. 221


2019 ◽  
Vol 7 ◽  
Author(s):  
Santanu Sinha ◽  
Magnus Aa. Gjennestad ◽  
Morten Vassvik ◽  
Mathias Winkler ◽  
Alex Hansen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document