scholarly journals A Molecular Dynamics Investigation on Methane Flow and Water Droplets Sliding in Organic Shale Pores with Nano-structured Roughness

Author(s):  
Wei Yong ◽  
Yingfang Zhou

AbstractRoughness of surfaces significantly influences how methane and water flow in shale nanopores. We perform molecular dynamics simulations to investigate the influence of surface roughness on pore-scale transport of pure methane as well as of two-phase methane–water systems with the water sliding as droplets over the pore surface. For single-phase methane flow, surface roughness shows a limited influence on bulk methane density, while it significantly reduces the methane flow capacity. In methane–water systems, the mobility of water is a strong function of surface roughness including a clear transition between immobile and mobile water droplets. For cases with mobile water, droplet sliding speeds were correlated with pressure gradient and surface roughness. Sliding water droplets hardly deform, i.e., there is little difference between their advancing and receding contact angle with structured roughness.

2008 ◽  
Vol 106 (1) ◽  
pp. 43-56
Author(s):  
Geert Van den Branden ◽  
Martine Baelmans ◽  
William D’haeseleer

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7327
Author(s):  
Robin Vacher ◽  
Astrid S. de Wijn

Roughness of surfaces is both surprisingly ubiquitous on all length scales and extremely relevant practically. The appearance of multi-scale roughness has been linked to avalanches and plastic deformation in metals. However, other, more-complex materials have mechanisms of plasticity that are significantly different from those of metals. We investigated the emergence of roughness in a polymer under compression. We performed molecular-dynamics simulations of a slab of solid polyvinyl alcohol that was compressed bi-axially, and we characterised the evolution of the surface roughness. We found significantly different behaviour than what was previously observed in similar simulations of metals. We investigated the differences and argue that the visco-elasticity of the material plays a crucial role.


2011 ◽  
Vol 11 (2) ◽  
pp. 519-527 ◽  
Author(s):  
X. Li ◽  
T. Hede ◽  
Y. Tu ◽  
C. Leck ◽  
H. Ågren

Abstract. Aerosol particles in the atmosphere are important participants in the formation of cloud droplets and have significant impact on cloud albedo and global climate. According to the Köhler theory which describes the nucleation and the equilibrium growth of cloud droplets, the surface tension of an aerosol droplet is one of the most important factors that determine the critical supersaturation of droplet activation. In this paper, with specific interest to remote marine aerosol, we predict the surface tension of aerosol droplets by performing molecular dynamics simulations on two model systems, the pure water droplets and glycine in water droplets. The curvature dependence of the surface tension is interpolated by a quadratic polynomial over the nano-sized droplets and the limiting case of a planar interface, so that the so-called Aitken mode particles which are critical for droplet formation could be covered and the Köhler equation could be improved by incorporating surface tension corrections.


2020 ◽  
Vol 152 (20) ◽  
pp. 204502
Author(s):  
Nabankur Dasgupta ◽  
Yun Kyung Shin ◽  
Mark V. Fedkin ◽  
Adri van Duin

Sign in / Sign up

Export Citation Format

Share Document