protein partitioning
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 10)

H-INDEX

32
(FIVE YEARS 1)

Author(s):  
Anita V. Kumar ◽  
Louis R. Lapierre

AbstractSomatic maintenance and cell survival rely on proper protein homeostasis to ensure reliable functions across the cell and to prevent proteome collapse. Maintaining protein folding and solubility is central to proteostasis and is coordinated by protein synthesis, chaperoning, and degradation capacities. An emerging aspect that influences proteostasis is the dynamic protein partitioning across different subcellular structures and compartments. Here, we review recent literature related to nucleocytoplasmic partitioning of proteins, nuclear and cytoplasmic quality control mechanisms, and their impact on the development of age-related diseases. We also highlight new points of entry to modulate spatially-regulated proteostatic mechanisms to delay aging.


2020 ◽  
Author(s):  
Veronica H Ryan ◽  
Theodora M Perdikari ◽  
Mandar T Naik ◽  
Camillo F Saueressig ◽  
Jeremy Lins ◽  
...  

2020 ◽  
Vol 21 (20) ◽  
pp. 7694
Author(s):  
Lucía Yepes-Molina ◽  
Micaela Carvajal ◽  
Maria Carmen Martínez-Ballesta

Detergent-resistant membranes (DRMs) microdomains, or “raft lipids”, are key components of the plasma membrane (PM), being involved in membrane trafficking, signal transduction, cell wall metabolism or endocytosis. Proteins imbibed in these domains play important roles in these cellular functions, but there are few studies concerning DRMs under abiotic stress. In this work, we determine DRMs from the PM of broccoli roots, the lipid and protein content, the vesicles structure, their water osmotic permeability and a proteomic characterization focused mainly in aquaporin isoforms under salinity (80 mM NaCl). Based on biochemical lipid composition, higher fatty acid saturation and enriched sterol content under stress resulted in membranes, which decreased osmotic water permeability with regard to other PM vesicles, but this permeability was maintained under control and saline conditions; this maintenance may be related to a lower amount of total PIP1 and PIP2. Selective aquaporin isoforms related to the stress response such as PIP1;2 and PIP2;7 were found in DRMs and this protein partitioning may act as a mechanism to regulate aquaporins involved in the response to salt stress. Other proteins related to protein synthesis, metabolism and energy were identified in DRMs independently of the treatment, indicating their preference to organize in DMRs.


Author(s):  
Veronica H. Ryan ◽  
Theodora Myrto Perdikari ◽  
Mandar T. Naik ◽  
Camillo F. Saueressig ◽  
Jeremy Lins ◽  
...  

SummarymRNA transport in neurons is a ubiquitous process but has been often overlooked as a contributor to disease. Mutations of transport granule protein hnRNPA2 cause hereditary proteinopathy of neurons, myocytes, and bone. Here, we examine transport granule component specificity, assembly/disassembly, and the link to neurodegeneration. hnRNPA2 transport granule components hnRNPF and ch-TOG interact weakly with hnRNPA2 yet they each partition specifically into hnRNPA2 liquid phases. hnRNPA2 tyrosine phosphorylation dissociates granule interactions by reducing hnRNPA2 phase separation and preventing partitioning of hnRNPF and ch-TOG; tyrosine phosphorylation also decreases aggregation of hnRNPA2 disease mutants. A C. elegans model of hnRNPA2 D290V-associated neurodegeneration exhibits TDP-43 ortholog-dependent glutamatergic neurodegeneration. Expression of the tyrosine kinase that phosphorylates hnRNPA2 reduces glutamatergic neurodegeneration. The evidence for specific partitioning of granule components as well as disruption of these interactions and reduction of neurodegeneration by tyrosine phosphorylation suggest transport granule biology has a role in the pathogenesis of neurodegeneration.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Maria Merezhko ◽  
Emmi Pakarinen ◽  
Riikka-Liisa Uronen ◽  
Henri J. Huttunen

Abstract The plasma membrane consists of a variety of discrete domains differing from the surrounding membrane in composition and properties. Selective partitioning of protein to these microdomains is essential for membrane functioning and integrity. Studying the nanoscale size and dynamic nature of the membrane microdomains requires advanced imaging approaches with a high spatiotemporal resolution and, consequently, expensive and specialized equipment, unavailable for most researchers and unsuited for large-scale studies. Thus, understanding of protein partitioning to the membrane microdomains in health and disease is still hampered by the lack of inexpensive live-cell approaches with an appropriate spatial resolution. Here, we have developed a novel approach based on Gaussia princeps luciferase protein-fragment complementation assay to quantitively investigate protein partitioning to cholesterol and sphingomyelin-rich domains, sometimes called ‘lipid rafts’, in intact living cells with a high-spatial resolution. In the assay, the reporter construct, carrying one half of the luciferase protein, is targeted to lipid microdomains through the fused acetylation motif from Src-family kinase Fyn. A protein of interest carries the second half of the luciferase protein. Together, this serves as a reversible real-time sensor of raft recruitment for the studied protein. We demonstrated that the assay can efficiently detect the dynamic alterations in raft localization of two disease-associated proteins: Akt and APP. Importantly, this method can be used in high-throughput screenings and other large-scale studies in living cells. This inexpensive, and easy to implement raft localization assay will benefit all researchers interested in protein partitioning in rafts.


2019 ◽  
Vol 116 (3) ◽  
pp. 373a
Author(s):  
George A. Pantelopulos ◽  
Asanga Bandara ◽  
John E. Straub

Sign in / Sign up

Export Citation Format

Share Document