kohler theory
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 13)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Michael C. Jarvis

Abstract Background and purpose Virus-containing aerosol droplets emitted by breathing, speech or coughing dry rapidly to equilibrium with ambient relative humidity (RH), increasing in solute concentration with effects on virus survival and decreasing in diameter with effects on sedimentation and respiratory uptake. The aim of this paper is to model the effect of ionic and macromolecular solutes on droplet drying and solute concentration. Methods Deliquescence-efflorescence concepts and Kohler theory were used to simulate the evolution of solute concentrations and water activity in respiratory droplets, starting from efflorescence data on mixed NaCl/KCl aerosols and osmotic pressure data on respiratory macromolecules. Results In NaCl/KCl solutions total salt concentrations were shown to reach 10-13 M at the efflorescence RH of 40-55%, depending on the K:Na ratio. Dependence on K:Na ratio implies that the evaporation curves differ between aerosols derived from saliva and from airway surfaces. The direct effect of liquid droplet size through the Kelvin term was shown to be smaller and restricted to the evolution of breath emissions. Modelling the effect of proteins and glycoproteins showed that salts determine drying equilibria down to the efflorescence RH, and macromolecules at lower RH. Conclusion Differences in solute composition between airway surfaces and saliva are predicted to lead to different drying behaviour of droplets emitted by breathing, speech and coughing. These differences may influence the inactivation of viruses.


2021 ◽  
Vol 11 (18) ◽  
pp. 8439
Author(s):  
Yoko Iwamoto ◽  
Ayami Watanabe ◽  
Ryota Kataoka ◽  
Mitsuo Uematsu ◽  
Kazuhiko Miura

To investigate interactions between aerosols and clouds, the size and number concentrations of the cloud condensation nuclei (CCN) and the cloud droplets (CDs) were measured at the summit of Mt. Fuji (altitude 3776 m), Japan. The CCN number concentrations (NCCN) are significantly higher in continental air masses than in air masses from the Pacific Ocean. The hygroscopicity parameter k did not change much for different air mass origins, indicating that aerosol particles in the free troposphere are well mixed. Based on the CD number concentrations (NCD), the degree of supersaturation in the ambient air during the cloud-shrouded period was estimated to be 0.15% (25th percentile) to 0.44% (75th percentile). To evaluate factors influencing the NCD, measured NCD were compared to ones calculated based on the Köhler theory using aerosol number size distributions, k, and the degree of supersaturation. The results showed that NCD could not be reproduced satisfyingly when the mean number size distribution or the mean effective supersaturation were used for the calculation. This study highlights the importance of obtaining information about the degree of supersaturation to predict NCD in the atmosphere.


Author(s):  
Maiken Baumberger ◽  
Bettina Breuer ◽  
Yen-Jen Lai ◽  
Dmitrii Gabyshev ◽  
Otto Klemm

AbstractSize-resolved turbulent fluxes of fog droplets are investigated above a subtropical montane cloud forest in Taiwan. By integrating an aerosol spectrometer into an eddy-covariance set-up, we measure droplet number fluxes and liquid water fluxes in a size range of aerosol particles and droplets with diameters ranging from 0.25 $${\upmu }\!\mathrm{m}$$ μ m to 17.3 $${\upmu }\!\mathrm{m}$$ μ m . We find two flux-direction changes within this size range: a downward flux occurs for accumulation-mode aerosols of diameters between 0.25 $${\upmu }\!\mathrm{m}$$ μ m and 0.83 $${\upmu }\!\mathrm{m}$$ μ m , an upward flux occurs for hydrated aerosols with diameters between 1.1 $${\upmu }\!\mathrm{m}$$ μ m and 2.4 $${\upmu }\!\mathrm{m}$$ μ m , and a downward flux occurs again for activated fog droplets between diameters of 3 $${\upmu }\!\mathrm{m}$$ μ m and 17.3 $${\upmu }\!\mathrm{m}$$ μ m . The droplet size distributions can be modelled by a trimodal log-normal distribution, and the modes correlate with the different flux directions. The formation of the three modes and the establishment of the respective flux directions can be explained by combining the Köhler theory on the basis of measured ion concentrations in fog with the turbulent transport of droplets. Finally, from the combined analysis of droplet fluxes and size distributions, we infer relevant processes of droplet development and dissolving during various phases of the life cycles of the fog events.


2020 ◽  
Vol 20 (7) ◽  
pp. 4209-4225 ◽  
Author(s):  
Junteng Wu ◽  
Alessandro Faccinetto ◽  
Symphorien Grimonprez ◽  
Sébastien Batut ◽  
Jérôme Yon ◽  
...  

Abstract. Combustion and other high-temperature processes frequently result in the emission of aerosols in the form of polydisperse fractal-like aggregates made of condensed-phase nanoparticles (soot for instance). If certain conditions are met, the emitted aerosol particles are known to evolve into important cloud condensation nuclei (CCN) in the atmosphere. In this work, the hygroscopic parameter κ of complex morphology aggregates is calculated from the supersaturation-dependent activated fraction Fa=Fa(SS) in the frame of κ-Köhler theory. The particle size distribution is approximated with the morphology-corrected volume equivalent diameter calculated from the electrical mobility diameter by taking into account the diameter of the primary particle and the fractal dimension of the aggregate experimentally obtained from transmission electron microscopy measurements. Activation experiments are performed in water supersaturation conditions using a commercial CCN-100 condensation nuclei counter. The model is tested in close-to-ideal conditions of size-selected, isolated spherical particles (ammonium sulfate nanoparticles dispersed in nitrogen), then with complex polydisperse fractal-like aggregates (soot particles activated by exposure to ozone with κ as low as 5×10-5) that represent realistic anthropogenic emissions in the atmosphere.


2020 ◽  
Vol 13 (3) ◽  
pp. 1181-1193 ◽  
Author(s):  
Leigh R. Crilley ◽  
Ajit Singh ◽  
Louisa J. Kramer ◽  
Marvin D. Shaw ◽  
Mohammed S. Alam ◽  
...  

Abstract. There is considerable interest in using low-cost optical particle counters (OPCs) to supplement existing routine air quality networks that monitor particle mass concentrations. In order to do this, low-cost OPC data need to be comparable with particle mass reference instrumentation; however, there is currently no widely agreed upon methodology to accomplish this. Aerosol hygroscopicity is known to be a key parameter to consider when correcting particle mass concentrations derived from low-cost OPCs, particularly at high ambient relative humidity (RH). Correction factors have been developed that apply κ-Köhler theory to correct for the influence of water uptake by hygroscopic aerosols. We have used datasets of co-located reference particle measurements and low-cost OPC (OPC-N2, Alphasense) measurements, collected in four cities on three continents, to explore the performance of this correction factor. We provide evidence that the elevated particle mass concentrations, reported by the low-cost OPC relative to reference instrumentation, are due to bulk aerosol hygroscopicity under different RH conditions, which is determined by aerosol composition and, in particular, the levels of hygroscopic aerosols (sulfate and nitrate). We exploit measurements made in volcanic plumes in Nicaragua, which are predominantly composed of sulfate aerosol, as a natural experiment to demonstrate this behaviour in the ambient atmosphere; the observed humidogram from these measurements closely resembles the calculated pure sulfuric acid humidogram. The results indicate that the particle mass concentrations derived from low-cost OPCs during periods of high RH (>60 %) need to be corrected for aerosol hygroscopic growth. We employed a correction factor based on κ-Köhler theory and observed that the corrected OPC-N2 PM2.5 mass concentrations were within 33 % of reference measurements at all sites. The results indicated that a κ value derived in situ (using suitable reference instrumentation) would lead to the most accurate correction relative to co-located reference instruments. Applying a κ values from the literature in the correction factor also resulted in improved OPC-N2 performance, with the measurements being within 50 % of the reference values. Therefore, for areas where suitable reference instrumentation for developing a local correction factor is lacking, using a literature κ value can result in a reasonable correction. For locations with low levels of hygroscopic aerosols and low RH values, a simple calibration against gravimetric measurements (using suitable reference instrumentation) would likely be sufficient. Whilst this study generated correction factors specific for the Alphasense OPC-N2 sensor, the calibration methodology developed is likely amenable to other low-cost PM sensors.


2019 ◽  
Author(s):  
Leigh R. Crilley ◽  
Ajit Singh ◽  
Louisa J. Kramer ◽  
Marvin D. Shaw ◽  
Mohammed S. Alam ◽  
...  

Abstract. There is considerable interest in using low-cost optical particle counters (OPC) to supplement existing routine air quality networks that monitor particle mass concentrations. In order to do this, low-cost OPC data needs to be cross-comparable with particle mass reference instrumentation, and as yet, there is no widely agreed methodology. Aerosol hygroscopicity is known to be a key parameter to consider when correcting particle mass concentrations derived from a low-cost OPC, particularly at high ambient Relative Humidity (RH). Correction factors have been developed that apply κ-Köhler theory to correct for the influence of water uptake by hygroscopic aerosols. We have used datasets of co-located reference particle measurements and a low-cost OPC (OPC-N2, Alphasense), collected in four cities in three continents, to explore the performance of this correction factor. We report evidence that the elevated particle mass concentrations, reported by the low-cost OPC relative to reference instrumentation, is due to bulk aerosol hygroscopicity under different RH conditions, which is determined by aerosol composition and in particular the levels of hygroscopic aerosols (sulphate and nitrate). We exploit measurements made in volcanic plumes in Nicaragua, that are predominantly composed of sulphate aerosol, as a natural experiment to demonstrate this behaviour in the ambient atmosphere, with the observed humidogram closely resembling the calculated pure sulphuric acid humidogram. The results indicate that the particle mass concentrations derived from low-cost OPCs during periods of high RH (> 60 %) need to be corrected for aerosol hygroscopic growth. We employed a correction factor based on κ-Köhler theory and observed corrected OPC-N2 PM2.5 mass concentrations to be within 33 % of reference measurements at all sites. The results indicated that an in situ derived κ (using suitable reference instrumentation) would lead to the most accurate correction relative to co-located reference instruments. Applying literature κ in the correction factor also resulted in improved performance of OPC-N2, to be within 50 % of reference. Therefore, for areas where suitable reference instrumentation for developing a local correction factor is lacking, using a literature κ value can result in a reasonable correction. For locations with low levels of hygroscopic aerosols and RH, a simple calibration against gravimetric measurements (using suitable reference instrumentation) would likely be sufficient. Whilst this study generated correction factors specific for the Alphasense OPC-N2 sensor, the calibration methodology developed is likely amenable to other low cost PM sensors.


2019 ◽  
Vol 12 (8) ◽  
pp. 4277-4289 ◽  
Author(s):  
Diep Vu ◽  
Shaokai Gao ◽  
Tyler Berte ◽  
Mary Kacarab ◽  
Qi Yao ◽  
...  

Abstract. Changes in aerosol chemical mixtures modify cloud condensation nuclei (CCN) activity. Previous studies have developed CCN models and validated changes in external and internal mixing state with ambient field data. Here, we develop an experimental method to test and validate the CCN activation of known aerosol chemical composition with multicomponent mixtures and varying mixing states. CCN activation curves consisting of one or more activation points are presented. Specifically, simplified two-component systems of varying hygroscopicity were generated under internal, external, and transitional mixing conditions. κ-Köhler theory predictions were calculated for different organic and inorganic mixtures and compared to experimentally derived kappa values and respective mixing states. This work employs novel experimental methods to provide information on the shifts in CCN activation data due to external to internal particle mixing from controlled laboratory sources. Results show that activation curves consisting of single and double activation points are consistent with internal and external mixtures, respectively. In addition, the height of the plateau at the activation points is reflective of the externally mixed concentration in the mixture. The presence of a plateau indicates that CCN activation curves consisting of multiple inflection points are externally mixed aerosols of varying water-uptake properties. The plateau disappears when mixing is promoted in the flow tube. At the end of the flow tube experiment, the aerosols are internally mixed and the CCN activated fraction data can be fit with a single-sigmoid curve. The technique to mimic externally to internally mixed aerosol is applied to non-hygroscopic carbonaceous aerosol with organic and inorganic components. To our knowledge, this work is the first to show controlled CCN activation of mixed non-hygroscopic soot with hygroscopic material as the aerosol population transitions from externally to internally mixed states in laboratory conditions. Results confirm that CCN activation analysis methods used here and in ambient data sets are robust and may be used to infer the mixing state of complex aerosol compositions of unknown origin.


2019 ◽  
Vol 12 (7) ◽  
pp. 3825-3839 ◽  
Author(s):  
Wangshu Tan ◽  
Gang Zhao ◽  
Yingli Yu ◽  
Chengcai Li ◽  
Jian Li ◽  
...  

Abstract. Determination of cloud condensation nuclei (CCN) number concentrations at cloud base is important to constrain aerosol–cloud interactions. A new method to retrieve CCN number concentrations using backscatter and extinction profiles from multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of backscatter and extinction with relative humidity to derive dry backscatter and extinction and humidogram parameters. Humidogram parameters, Ångström exponents, and lidar extinction-to-backscatter ratios are then linked to the ratio of CCN number concentration to dry backscatter and extinction coefficient (ARξ). This linkage is established based on the datasets simulated by Mie theory and κ-Köhler theory with in-situ-measured particle size distributions and chemical compositions. CCN number concentration can thus be calculated with ARξ and dry backscatter and extinction. An independent theoretical simulated dataset is used to validate this new method and results show that the retrieved CCN number concentrations at supersaturations of 0.07 %, 0.10 %, and 0.20 % are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval error in CCN arises mostly from uncertainties in extinction coefficients and RH profiles. The proposed method improves CCN retrieval from lidar measurements and has great potential in deriving scarce long-term CCN data at cloud base, which benefits aerosol–cloud interaction studies.


2019 ◽  
Author(s):  
Xiaoxiao Li ◽  
Shaojie Song ◽  
Wei Zhou ◽  
Jiming Hao ◽  
Douglas R. Worsnop ◽  
...  

Abstract. Aerosol liquid water (ALW) is ubiquitous in ambient aerosol and plays an important role in the formation of both aerosol organics and inorganics. To investigate the interactions between ALW and aerosol organics during haze formation and evolution, ALW was modelled based on long-term measurements of submicron aerosol compositions from different seasons in Beijing. ALW contributed by aerosol inorganics (ALWinorg) was modelled by ISORROPIA-II, and ALW contributed by organics (ALWorg) was estimated with κ-Köhler theory, where a real-time hygroscopicity parameter of the organics (κorg) calculated from the real-time organic oxygen-to-carbon (O/C) was used. Particle overall hygroscopicity (κtotal) was computed by weighting component hygroscopicity parameters based on their volume fractions in the mixture. We found that ALWorg, which is often neglected in traditional ALW modelling, contributes a significant fraction (18–32 %) to the total ALW in Beijing. The highest ALWorg fraction appears in the cleanest days when both the organic fraction and κorg are relatively high. The distinct variation of O/C, from 0.2 to 1.3, indicates the wide variety of organic components. This emphasizes the necessity of using real-time κorg, instead of using a fixed κorg, to calculate ALWorg in Beijing. The significant variation of κorg which was calculated from O/C, together with the highly variable organic or inorganic volume fractions, leads to a wide range of κtotal (between 0.20 and 0.45), which exerts great impacts on the water uptake. The variation of organic O/C, or derived κorg, was found to be influenced by T, ALW, and aerosol mass concentrations. Among which, T and ALW both have promoting effects on O/C. During high-ALW haze episodes, although the organic fraction decreases rapidly, O/C, or derived κorg, increases with the increase in ALW, suggesting the formation of more soluble organics via aqueous/heterogeneous-phase process. A positive feedback loop is thus formed: during high-ALW episodes, the ever-increasing κorg, together with the decreasing particle organic fraction (or increasing particle inorganic fraction), increases κtotal, thus further promotes the ability of particles to uptake water.


Sign in / Sign up

Export Citation Format

Share Document