scholarly journals Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury

2011 ◽  
Vol 21 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Michiko Sekine ◽  
Toshiaki Monkawa ◽  
Ryuji Morizane ◽  
Kunie Matsuoka ◽  
Choji Taya ◽  
...  
2017 ◽  
Vol 312 (2) ◽  
pp. F284-F296 ◽  
Author(s):  
David R. Emlet ◽  
Nuria Pastor-Soler ◽  
Allison Marciszyn ◽  
Xiaoyan Wen ◽  
Hernando Gomez ◽  
...  

We have characterized the expression and secretion of the acute kidney injury (AKI) biomarkers insulin-like growth factor binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in human kidney epithelial cells in primary cell culture and tissue. We established cell culture model systems of primary kidney cells of proximal and distal tubule origin and observed that both proteins are indeed expressed and secreted in both tubule cell types in vitro. However, TIMP-2 is both expressed and secreted preferentially by cells of distal tubule origin, while IGFBP7 is equally expressed across tubule cell types yet preferentially secreted by cells of proximal tubule origin. In human kidney tissue, strong staining of IGFBP7 was seen in the luminal brush-border region of a subset of proximal tubule cells, and TIMP-2 stained intracellularly in distal tubules. Additionally, while some tubular colocalization of both biomarkers was identified with the injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, both biomarkers could also be seen alone, suggesting the possibility for differential mechanistic and/or temporal profiles of regulation of these early AKI biomarkers from known markers of injury. Last, an in vitro model of ischemia-reperfusion demonstrated enhancement of secretion of both markers early after reperfusion. This work provides a rationale for further investigation of these markers for their potential role in the pathogenesis of acute kidney injury.


1991 ◽  
Vol 260 (5) ◽  
pp. F757-F763 ◽  
Author(s):  
M. Suzuki ◽  
S. Kurihara ◽  
Y. Kawaguchi ◽  
O. Sakai

Vitamin D metabolites exert both acute and chronic influences on proximal tubule function. To further evaluate vitamin D action on the kidney, we examined the immediate effects of vitamin D metabolites on cytoplasmic calcium ion concentration [( Ca2+]i), using fura-2 and patch-clamp method in cultured proximal straight tubule cells of rabbit kidney. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] and 25-hydroxyvitamin D3 [25(OH)D3] evoked a transient rise in [Ca2+]i, and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] caused a sustained rise in [Ca2+]i; all effects were dose dependent. [Ca2+]i transient, evoked by 1,25(OH)2D3 alone, was abolished in Ca(2+)-free media. Pretreatment of cells in Ca(2+)-free media with caffeine (4 mM) or ryanodine (1 microM) to deplete Ca2+ store of endoplasmic reticulum or with TMB-8 (5 mM) to block Ca2+ release from storage blunted the effect of 25(OH)D3 on [Ca2+]i but not of 24,25(OH)2D3. Data were also supported by activities of Ca-dependent K channel and show that these three vitamin D metabolites in pharmacological doses increase [Ca2+]i of proximal tubule cells from different sources.


2020 ◽  
Vol 21 (9) ◽  
pp. 3275 ◽  
Author(s):  
Manoocher Soleimani

Coronaviruses (CoVs), including Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and the novel coronavirus disease-2 (SARS-CoV-2) are a group of enveloped RNA viruses that cause a severe respiratory infection which is associated with a high mortality [...]


2019 ◽  
Vol 317 (3) ◽  
pp. F743-F756 ◽  
Author(s):  
Sang Jun Han ◽  
Mihwa Kim ◽  
Vivette D. D’Agati ◽  
H. Thomas Lee

Acute kidney injury (AKI) due to renal ischemia-reperfusion (I/R) is a major clinical problem without effective therapy. Ginger is one of the most widely consumed spices in the world, and 6-shogaol, a major ginger metabolite, has anti-inflammatory effects in neuronal and epithelial cells. Here, we demonstrate our novel findings that 6-shogaol treatment protected against renal I/R injury with decreased plasma creatinine, blood urea nitrogen, and kidney neutrophil gelatinase-associated lipocalin mRNA synthesis compared with vehicle-treated mice subjected to renal I/R. Additionally, 6-shogaol treatment reduced kidney inflammation (decreased proinflammatory cytokine and chemokine synthesis as well as neutrophil infiltration) and apoptosis (decreased TUNEL-positive renal tubular cells) compared with vehicle-treated mice subjected to renal I/R. In cultured human and mouse kidney proximal tubule cells, 6-shogaol significantly attenuated TNF-α-induced inflammatory cytokine and chemokine mRNA synthesis. Mechanistically, 6-shogaol significantly attenuated TNF-α-induced NF-κB activation in human renal proximal tubule cells by reducing IKKαβ/IκBα phosphorylation. Furthermore, 6-shogaol induced a cytoprotective chaperone heme oxygenase (HO)-1 via p38 MAPK activation in vitro and in vivo. Consistent with these findings, pretreatment with the HO-1 inhibitor zinc protoporphyrin IX completely prevented 6-shogaol-mediated protection against ischemic AKI in mice. Taken together, our study showed that 6-shogaol protects against ischemic AKI by attenuating NF-κB activation and inducing HO-1 expression. 6-Shogaol may provide a potential therapy for ischemic AKI during the perioperative period.


Nephron ◽  
1999 ◽  
Vol 81 (2) ◽  
pp. 234-238 ◽  
Author(s):  
Michio Takeda ◽  
Isao Shirato ◽  
Mami Kobayashi ◽  
Hitoshi Endou

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Eleni Stamellou ◽  
Mingbo Cheng ◽  
Viktor Sterzer ◽  
Katja Leuchtle ◽  
Thiago Strieder ◽  
...  

Abstract Background and Aims Acute tubular injury accounts for the most common intrinsic cause for acute kidney injury (AKI). The scattered tubular cell (STC) phenotype was discovered as a uniform reaction of tubule cells triggered by injury. Our group was the first to identify an inducible transgenic mouse (PEC-rtTA-mouse) specifically labeling STCs with eGFP. Analysis of the transcriptional factors and associated signaling pathways might reveal the function and role of STCs in AKI. Method Here, we performed single-cell RNA sequencing of unilateral ischemia-reperfusion murine model of AKI 8, 24, 48 hours and 6 and 12 days after AKI induction. Results Genes expressing proximal tubular proteins and transporters were markedly downregulated during transition into the STC phenotype upon injury; but expression recovered over time and upon resolution and tubular cells re-differentiated into proximal tubule cells. This provides evidence for the first time that the STC phenotype is a transient and reversible phenotype triggered by injury. Among cells in the STC phenotype, we could identify 2 sub-clusters; a highly proliferating sub-cluster that in the cell cycle analysis showed the highest proportion of cycling cells. The second eGFP-positive cluster appeared very early after AKI and expressed a distinct set of genes (defined by 7 anchor genes). Some of the highly up-regulated genes are known markers of STCs hence confirming the specificity of our transgenic mouse line. Conclusion Our study provides gene expression patterns specifically in STCs upon injury and repair at multiple time points and suggests that the STC phenotype is a transient and reversible phenotype triggered by injury.


Nephron ◽  
1998 ◽  
Vol 80 (1) ◽  
pp. 121-122 ◽  
Author(s):  
Michio Takeda ◽  
Mami Kobayashi ◽  
Isao Shirato ◽  
Hitoshi Endou

Sign in / Sign up

Export Citation Format

Share Document