More than noise: light, moon phase, and singing behavior in a passerine

2021 ◽  
Author(s):  
Marco Tetsuya Nakamura-Garcia ◽  
Alejandro Ariel Ríos-Chelén
Keyword(s):  
2000 ◽  
Vol 151 (11) ◽  
pp. 417-424 ◽  
Author(s):  
Ernst Zürcher

Ancient forest utilization regulations regarding felling dates and wood use are compared to the moon cycles. Furthermore, moon-phase related investigations with regard to germination behaviour, insect infestation and durability of the wood are presented.


2021 ◽  
Author(s):  
Chiara De Gregorio ◽  
Filippo Carugati ◽  
Vittoria Estienne ◽  
Daria Valente ◽  
Teresa Raimondi ◽  
...  

Abstract In animal vocal communication, the development of adult-like vocalization is fundamental to interact appropriately with conspecifics. However, the factors that guide ontogenetic changes in the acoustic features remains poorly understood. In contrast with a historical view of nonhuman primate vocal production as substantially innate, recent research suggests that inheritance and physiological modification can only explain some of the developmental changes in call structure during growth. A particular case of acoustic communication is the indris' singing behavior, a peculiar case among Strepsirrhine primates. Thanks to a decade of intense data collection, this work provides the first long-term quantitative analysis on song development in a singing primate. To understand the ontogeny of such a complex vocal output, we investigated juvenile and sub-adult indris' vocal behaviour, and we found that young individuals started participating in the chorus years earlier than previously reported. Our results indicated that spectro-temporal song parameters underwent essential changes during growth. In particular, the age and sex of the emitter influenced the indris' vocal activity. We found that frequency parameters showed consistent changes across the sexes, but the temporal features showed different developmental trajectories for males and females. Given the low level of morphological sexual dimorphism and the marked differences in vocal behavior, we hypothesize that factors like social influences and auditory feedback may affect songs' features, resulting in high vocal flexibility in juvenile indris. This trait may be pivotal in a species that engages in choruses with rapid vocal turn-taking.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Stephen L. Webb ◽  
Kenneth L. Gee ◽  
Bronson K. Strickland ◽  
Stephen Demarais ◽  
Randy W. DeYoung

Few studies have documented fine-scale movements of ungulate species, including white-tailed deer(Odocoileus virginianus), despite the advent of global positioning system (GPS) technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt) from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut () than postrut (). Female daily movements were greatest during postparturition (), followed by parturition (), and preparturition (). We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.


1993 ◽  
Vol 182 (1) ◽  
pp. 147-171 ◽  
Author(s):  
M. W. Westneat ◽  
J. H. Long ◽  
W. Hoese ◽  
S. Nowicki

The movements of the head and beak of songbirds may play a functional role in vocal production by influencing the acoustic properties of songs. We investigated this possibility by synchronously measuring the acoustic frequency and amplitude and the kinematics (beak gape and head angle) of singing behavior in the white-throated sparrow (Zonotrichia albicollis) and the swamp sparrow (Melospiza georgiana). These birds are closely related emberizine sparrows, but their songs differ radically in frequency and amplitude structure. We found that the acoustic frequencies of notes in a song have a consistent, positive correlation with beak gape in both species. Beak gape increased significantly with increasing frequency during the first two notes in Z. albicollis song, with a mean frequency for note 1 of 3 kHz corresponding to a gape of 0.4 cm (a 15 degrees gape angle) and a mean frequency for note 2 of 4 kHz corresponding to a gape of 0.7 cm (a 30 degrees gape angle). The relationship between gape and frequency for the upswept third note in Z. albicollis also was significant. In M. georgiana, low frequencies of 3 kHz corresponding to beak gapes of 0.2-0.3 cm (a 10–15 degrees break angle), whereas frequencies of 7–8 kHz were associated with flaring of the beak to over 1 cm (a beak angle greater than 50 degrees). Beak gape and song amplitude are poorly correlated in both species. We conclude that cranial kinematics, particularly beak movements, influence the resonance properties of the vocal tract by varying its physical dimensions and thus play an active role in the production of birdsong.


2012 ◽  
Vol 27 (1) ◽  
pp. 210-218 ◽  
Author(s):  
SANDRA V. VALDERRAMA ◽  
LAURA E. MOLLES ◽  
JOSEPH R. WAAS

Sign in / Sign up

Export Citation Format

Share Document