Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest

Plant Ecology ◽  
2005 ◽  
Vol 179 (1) ◽  
pp. 53-65 ◽  
Author(s):  
J. Luis Hernandez-Stefanoni
1999 ◽  
Vol 91 (2-3) ◽  
pp. 223-229 ◽  
Author(s):  
Claude Gascon ◽  
Thomas E Lovejoy ◽  
Richard O Bierregaard Jr. ◽  
Jay R Malcolm ◽  
Phillip C Stouffer ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Martin B. Nadeau ◽  
Thomas P. Sullivan

We aimed to study relationships between plant biodiversity and soil chemical fertility in a mature tropical forest of Costa Rica. Soil samples were collected in nine sampling plots (5 m by 25 m) in order to identify P, K, Ca, Mg, Fe, Zn, Mn, Cu, and Al and total N contents, soil fertility index, CEC, pH, and C/N ratio. Furthermore, species richness, Shannon-Wiener and Simpson’s species diversities, structural richness, and structural diversity were calculated for each plot. Simple linear regression analyses were conducted. Tree species richness was inversely related to concentration levels of K, Ca, and P, CEC, and soil fertility index. Therefore, higher tree species richness tended to be found on sites with lower soil fertility, which is the complete opposite of temperate forests. As a result, tropical and temperate forest ecology should be considered separately. Shannon-Wiener tree species diversity was positively correlated to C/N ratio. Herb structural richness was positively correlated with soil fertility index and P concentration. Therefore, herb structural richness may be a good indicator of soil fertility. This study gives important insights on ecological relationships between plant biodiversity and soil chemical fertility in a primary tropical forest.


2020 ◽  
Vol 12 (6) ◽  
pp. 2238 ◽  
Author(s):  
Enric Tello ◽  
Joan Marull ◽  
Roc Padró ◽  
Claudio Cattaneo ◽  
Francesc Coll

Could past land uses, and the land cover changes carried out, affect the current landscape capacity to maintain biodiversity? If so, knowledge of historical landscapes and their socio-ecological transitions would be useful for sustainable land use planning. We constructed a GIS dataset in 10 × 10 km UTM cells of the province of Barcelona (Catalonia, Spain) for 1956 and 2009 with the changing levels of farming disturbance exerted through the human appropriation of photosynthetic net primary production (HANPP), and a set of landscape ecology metrics to assess the impacts of the corresponding land-use changes. Then, we correlated them with the spatial distribution of total species richness (including vascular plants, amphibians, reptiles, birds and mammals). The results allow us to characterize the main trends in changing landscape patterns and processes, and explore whether a land-use legacy of many complex agroforest mosaics maintained by the intermediate farming disturbance managed in 1956 could still exist, despite the decrease or disappearance of those mosaics before 2009 due to the combined impacts of agroindustrial intensification (meaning higher HANPP levels), forest transition (meaning lower HANPP levels) and urban sprawl. Statistical analysis reveals a positive impact of the number of larger, less disturbed forest patches, where many protected natural sites have been created in 1956–2009. However, it also confirms that this result has not only been driven by conservation policies and that the distribution of species richness is currently correlated with the maintenance of intermediate levels of HANPP. This suggests that both land-sharing and land-sparing approaches to biodiversity conservation may have played a synergistic role owing to the legacy of complex land cover mosaics of former agricultural landscapes that are now under a serious threat.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Roberth Fagundes ◽  
Kleber Del-Claro ◽  
Sérvio Pontes Ribeiro

Many studies have investigated the mechanisms behind the structure of arboreal ant assemblages. In this study, the objective was to evaluate the effect of availability of honeydew-producing colonies ofCalloconophora pugionata(Membracidae) on the structure of ant assemblages associated with the host plantMyrcia obovata(Myrtaceae) in an Atlantic forest of Minas Gerais (Brazil). Our experiment consisted in a gradual exclusion of hemipteran colonies out of the host plant crown and further record of the ant assemblage response (species richness, composition, and occurrence) to the presence and density of treehopper colonies. The hypothesis was that an increase in the number of trophobiont herbivores results in an increase in tending ant occurrence but a reduction in ant species diversity. Results corroborated our main hypothesis: membracids had a positive effect on the occurrence of ants but negative on species richness. Overall insect occurrence was also reduced with increasing inC. pugionatacolonies, probably due to strengthening dominant ant species territory sizes and intensification of patrolling.


2013 ◽  
Vol 22 (10) ◽  
pp. 2827-2838 ◽  
Author(s):  
Jennifer Kerekes ◽  
Michael Kaspari ◽  
Bradley Stevenson ◽  
R. Henrik Nilsson ◽  
Martin Hartmann ◽  
...  

2017 ◽  
Vol 284 (1863) ◽  
pp. 20171503 ◽  
Author(s):  
Thorsten Wiegand ◽  
Felix May ◽  
Martin Kazmierczak ◽  
Andreas Huth

Understanding the structure and dynamics of highly diverse tropical forests is challenging. Here we investigate the factors that drive the spatio-temporal variation of local tree numbers and species richness in a tropical forest (including 1250 plots of 20 × 20 m 2 ). To this end, we use a series of dynamic models that are built around the local spatial variation of mortality and recruitment rates, and ask which combination of processes can explain the observed spatial and temporal variation in tree and species numbers. We find that processes not included in classical neutral theory are needed to explain these fundamental patterns of the observed local forest dynamics. We identified a large spatio-temporal variability in the local number of recruits as the main missing mechanism, whereas variability of mortality rates contributed to a lesser extent. We also found that local tree numbers stabilize at typical values which can be explained by a simple analytical model. Our study emphasized the importance of spatio-temporal variability in recruitment beyond demographic stochasticity for explaining the local heterogeneity of tropical forests.


2018 ◽  
Vol 10 (7) ◽  
pp. 1136 ◽  
Author(s):  
Sébastien Bonthoux ◽  
Solenne Lefèvre ◽  
Pierre-Alexis Herrault ◽  
David Sheeren

Continuous-based predictors of habitat characteristics derived from satellite imagery are increasingly used in species distribution models (SDM). This is especially the case of Normalized Difference Vegetation Index (NDVI) which provides estimates of vegetation productivity and heterogeneity. However, when NDVI predictors are incorporated into SDM, synchrony between biological observations and image acquisition must be questionned. Due to seasonal variations of NDVI during the year, landscape patterns of habitats are revealed differently from one date to another leading to variations in models’ performance. In this paper, we investigated the influence of acquisition time period of NDVI to explain and predict bird community patterns over France. We examined if the NDVI acquisition period that best fit the bird data depends on the dominant land cover context. We also compared models based on single time period of NDVI with one model built from the Dynamic Habitat Index (DHI) components which summarize variations in vegetation phenology throughout the year from the fraction of radiation absorbed by the canopy (fPAR). Bird species richness was calculated as response variable for 759 plots of 4 km2 from the French Breeding Bird Survey. Bird specialists and generalists to habitat were considered. NDVI and DHI predictors were both derived from MODIS products. For NDVI, five time periods in 2010 were compared, from late winter to begin of autumn. A climate predictor was also used and Generalized Additive Models were fitted to explain and predict bird species richness. Results showed that NDVI-based proxies of dominant habitat identity and spatial heterogeneity explain more bird community patterns than DHI-based proxies of annual productivity and seasonnality. We also found that models’ performance was both time and context-dependent, varying according to the bird groups. In general, best time period of NDVI did not match with the acquisition period of bird data because in case of synchrony, differences in habitats are less pronounced. These findings suggest that the most powerful approach to estimate bird community patterns is the simplest one. It only requires NDVI predictors from a single appropriate time period, in addition to climate, which makes the approach very operational.


Sign in / Sign up

Export Citation Format

Share Document