Effects of restoration strategies on vegetation establishment in retired cranberry bogs

Plant Ecology ◽  
2021 ◽  
Author(s):  
Bianca M. Wentzell ◽  
Emile D. DeVito ◽  
Daniela J. Shebitz
2020 ◽  
Vol 7 (2) ◽  
pp. 88-97
Author(s):  
Aouadj Sid Ahmed ◽  
Nasrallah Yahia ◽  
Hasnaoui Okkacha ◽  
Khatir Hadj

AbstractThe forest of Doui Thabet is one of the forests of the Mounts of Saida (Western Algeria) which is experiencing a dynamic regressive. Located in the semi-arid bioclimatic stage, it is located at the edge of two phytogeographic sub-sectors: atlas Tellien Oranais (O3) and high plateau subsector (H1). Among the factors that threaten to curb this fragile and weakened ecosystem, in addition to drought and climate aridity and which has become a structural ecological phenomenon; the overgrazing is also a major limiting factor. This current study provides a qualitative and quantitative assessment of anthropogenic pressure exerted in this area zone. The methodology adopted in this study is that of Le Houerou (1969) and Montoya (1983), which it is based on the calculation of the annual needs of the herd in forage units, the estimate of the feed potential of production, the coefficient of overgrazing and in addition to the anthropogenic pressure index. The result of the forage balance in the forest rangelands of the studied area has a forage deficit (overload) of (96.64%) (a sylvopastoral imbalance), in addition to that, the coefficient of overgrazing is (92.3%) and the anthropogenic pressure index is very high (28). The conservation and the restoration of this area is a major concern in the face of global changes, taking into account their mode of reproduction and their dynamics, for the development of restoration strategies and more effective ways of protection.


Author(s):  
Alexandra S. Thomsen ◽  
Johannes Krause ◽  
Monica Appiano ◽  
Karen E. Tanner ◽  
Charlie Endris ◽  
...  

AbstractSea level rise threatens coastal wetlands worldwide, and restoration projects are implementing strategies that decrease vulnerability to this threat. Vegetation monitoring at sites employing new restoration strategies and determination of appropriate monitoring techniques improve understanding of factors leading to restoration success. In Central California, soil addition raised a degraded marsh plain to a high elevation expected to be resilient to sea level rise over the next century. We monitored plant survival and recruitment using area searches, transect surveys, and unoccupied aircraft systems (UAS) imagery. We used random forest modeling to examine the influence of nine environmental variables on vegetation colonization and conducted targeted soil sampling to examine additional factors contributing to vegetation patterns. Limited pre-construction vegetation survived soil addition, likely due to the sediment thickness (mean = 69 cm) and placement method. After 1 year, about 10% of the initially bare area saw vegetation reestablishment. Elevation and inundation frequency were particularly critical to understanding restoration success, with greatest vegetation cover in high-elevation areas tidally inundated < 0.85% of the time. Soil analysis suggested greater salinity stress and ammonium levels in poorly-vegetated compared to well-vegetated areas at the same elevation. We found that both transect and UAS methods were suitable for monitoring vegetation colonization. Field transects may provide the best approach for tracking early vegetation colonization at moderate-sized sites under resource limitations, but UAS provide a complementary landscape perspective. Beyond elucidating patterns and drivers of marsh dynamics at a newly restored site, our investigation informs monitoring of marsh restoration projects globally.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1489
Author(s):  
Hao Li ◽  
Xiaoming Xu ◽  
Minghao Wu ◽  
Zhicheng Liu

It is necessary to understand the evolution of a river channel when reconstructing its evolution process and analyzing the controlling factors essential for river management and ecological restoration. In the past 50 years, the ecological environment around the Yongding River has deteriorated considerably, and the downstream has been completely cut off. Despite this, few have studied its morphology. In this study, we analyze the morphology of the Yongding River (Beijing, China) stretching for 92 km in four different periods between 1964 and 2018. A data treatment is carried out based on GIS, and the morphological evolution trajectory of the river channel at the overall and reach scales is reconstructed. The results show that the river morphology has undergone significant changes: the channel width has narrowed by 31%, and the temporal and spatial patterns show significant differences. By analyzing the impacts of human activities and climate change in various periods, we find human intervention to be the most important controlling factor. Based on our results, we proposed a set of river restoration strategies and protection measures for the Yongding River to guide watershed management and land planning.


2021 ◽  
Author(s):  
Audra Ligafinza ◽  
Farasdaq Muchibbus Sajjad ◽  
Mohammad Abdul Jabbar ◽  
Anggia Fatmawati ◽  
Alvin Derry Wirawan ◽  
...  

Abstract During the blowout event, it is critical to track the oil spill to minimize environmental damage and optimize restoration cost. In this paper, we deliver our success story in handling oil spill from recent experiences. We utilize remote sensing technologies to establish our analysis and plan the remediation strategies. We also comprehensively discuss the techniques to analyze big data from the satellites, to utilize the downloaded data for forecasting, and to align the satellite information with restoration strategies. PHE relies on its principle to maintain minimum damage and ensures safety by dividing the steps into several aspects of monitoring, response (offshore and onshore), shoreline management and waste management. PHE utilizes latest development in survey by using satellite imaging, survey boat, chopper and UAV drone. Spill containment is done using several layers of oil boom to recover oil spill, complemented with skimmers and storage tanks. PHE encourages shoreline remediation using nets and manual recovery for capturing oil sludge. Using this combination of technologies, PHE is able to model and anticipate oil spill movement from the source up until the farthest shoreline. This enables real time monitoring and handling, therefore minimum environmental damage is ensured. PHE also employs prudent engineering design based on real time field condition in order to ensure the equipment are highly suited for the condition, as well as ensuring good supply chain of the material availability. This publication addresses the first offshore blowout mitigation and handling in Indonesia that uses novel technologies such as static oil boom, satellite imaging and integrated effort in handling shoreline damage. It is hoped that the experience can be replicated for other offshore operating contractors in Indonesia in designing blowout remediation.


Sign in / Sign up

Export Citation Format

Share Document