weighted kernel
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 33)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Ayman Elgharabawy ◽  
Mukesh Prasad ◽  
Chin-Teng Lin

Accuracy and computational cost are the main challenges of deep neural networks in image recognition. This paper proposes an efficient ranking reduction to binary classification approach using a new feed-forward network and feature selection based on ranking the image pixels. Preference net (PN) is a novel deep ranking learning approach based on Preference Neural Network (PNN), which uses new ranking objective function and positive smooth staircase (PSS) activation function to accelerate the image pixels’ ranking. PN has a new type of weighted kernel based on spearman ranking correlation instead of convolution to build the features matrix. The PN employs multiple kernels that have different sizes to partial rank image pixels’ in order to find the best features sequence. PN consists of multiple PNNs’ have shared output layer. Each ranker kernel has a separate PNN. The output results are converted to classification accuracy using the score function. PN has promising results comparing to the latest deep learning (DL) networks using the weighted average ensemble of each PN models for each kernel on CFAR-10 and Mnist-Fashion datasets in terms of accuracy and less computational cost.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258326
Author(s):  
Wen Bo Liu ◽  
Sheng Nan Liang ◽  
Xi Wen Qin

Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Wenzhong Shi ◽  
Chengzhuo Tong ◽  
Anshu Zhang ◽  
Zhicheng Shi

Abstract Background Since most of the global population needs to be vaccinated to reduce COVID-19 transmission and mortality, a shortage of COVID-19 vaccine supply is inevitable. We propose a spatial and dynamic vaccine allocation solution to assist in the allocation of limited vaccines to people who need them most. Methods We developed a weighted kernel density estimation (WKDE) model to predict daily COVID-19 symptom onset risk in 291 Tertiary Planning Units in Hong Kong from 18 January 2020 to 22 December 2020. Data of 5,409 COVID-19 onset cases were used. We then obtained spatial distributions of accumulated onset risk under three epidemic scenarios, and computed the vaccine demands to form the vaccine allocation plan. We also compared the vaccine demand under different real-time effective reproductive number (Rt) levels. Results The estimated vaccine usages in three epidemiologic scenarios are 30.86% - 45.78% of the Hong Kong population, which is within the total vaccine availability limit. In the sporadic cases or clusters of onset cases scenario, when 6.26% of the total population with travel history to high-risk areas can be vaccinated, the COVID-19 transmission between higher- and lower-risk areas can be reduced. Furthermore, if the current Rt is increased to double, the vaccine usages needed will be increased by more than 7%. Conclusions The proposed solution can be used to dynamically allocate limited vaccines in different epidemic scenarios, thereby enabling more effective protection. The increased vaccine usages associated with increased Rt indicates the necessity to maintain appropriate control measures even with vaccines available.


2021 ◽  
Vol 13 (7) ◽  
pp. 1346
Author(s):  
Chenyu Ge ◽  
Mengmeng Wang ◽  
Hongming Zhang ◽  
Huan Chen ◽  
Hongguang Sun ◽  
...  

The elimination of mixed errors is a key preprocessing technology for the area of digital elevation model data analysis, which is important for further applying data. We associated group sparsity with the low-rank uniqueness of local transformations of mixing errors to effectively remove mixing errors in data from Shuttle Radar Topography Mission 1 (SRTM 1) based on the sparseness of low-rank groups. First, the stripe-error structure that appeared globally in multiple directions was able to be better represented locally using group-sparse regularization and the uniqueness of the data in the low-rank direction of the local range and using variational ideas to constrain the gradient direction of the data to avoid redundant elimination. Second, the nonlocal self-similarity of the weighted kernel norm was used to remove random noise. Finally, the proposed model for eliminating mixed errors was solved using an algorithm based on the multiplier method of alternating direction. Experiments using simulated and real data found that the proposed low-rank group-sparse method (LRGS) eliminated mixed errors in both visual and quantitative evaluations better than the most recent processing methods and existing dataset products.


2021 ◽  
Vol 13 (3) ◽  
pp. 508
Author(s):  
Xumin Yu ◽  
Yan Feng ◽  
Yanlong Gao ◽  
Yingbiao Jia ◽  
Shaohui Mei

Due to its excellent performance in high-dimensional space, the kernel extreme learning machine has been widely used in pattern recognition and machine learning fields. In this paper, we propose a dual-weighted kernel extreme learning machine for hyperspectral imagery classification. First, diverse spatial features are extracted by guided filtering. Then, the spatial features and spectral features are composited by a weighted kernel summation form. Finally, the weighted extreme learning machine is employed for the hyperspectral imagery classification task. This dual-weighted framework guarantees that the subtle spatial features are extracted, while the importance of minority samples is emphasized. Experiments carried on three public data sets demonstrate that the proposed dual-weighted kernel extreme learning machine (DW-KELM) performs better than other kernel methods, in terms of accuracy of classification, and can achieve satisfactory results.


2021 ◽  
Vol 16 (2) ◽  
pp. 4647-2688
Author(s):  
Justin Ushize Rutikanga ◽  
Aliou Diop

Estimation of the extreme-value index of a heavy-tailed distribution is investigated when some functional random covariate (i.e. valued in some infinite dimensional space) information is available and the scalar response variable is right-censored. A weighted kernel version of Hill’s estimator of the extreme-value index is proposed and its asymptotic normality is established under mild assumptions.A simulation study is conducted to assess the finite-sample behavior of the proposed estimator. An application to ambulatory blood pressure trajectories and clinical outcome in stroke patients is also provided.


Sign in / Sign up

Export Citation Format

Share Document