Initial Effects of Wood Ash Application on the Stream Water Chemistry in a Boreal Catchment in Central Sweden

2011 ◽  
Vol 221 (1-4) ◽  
pp. 123-136 ◽  
Author(s):  
Sara H. Norström ◽  
Dan Bylund ◽  
Jenny L. K. Vestin ◽  
Ulla S. Lundström
2014 ◽  
Vol 37 ◽  
pp. 396-411 ◽  
Author(s):  
R.C. Helliwell ◽  
J. Aherne ◽  
T.R. Nisbet ◽  
G. MacDougall ◽  
S. Broadmeadow ◽  
...  

2003 ◽  
Vol 65 (4) ◽  
pp. 365-376
Author(s):  
Tsutomu IYOBE ◽  
Akira HARAGUCHI ◽  
Fumihiko NISHIO ◽  
Shun'ichi KOBAYASHI

2009 ◽  
Vol 17 (1) ◽  
pp. 53-62
Author(s):  
Akiyuki KAWASAKI ◽  
Reiji FUJIMAKI ◽  
Nobuhiro KANEKO ◽  
Satoru SADOHARA

2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Huong T. Le ◽  
Thomas Pommier ◽  
Olivier Ribolzi ◽  
Bounsamay Soulileuth ◽  
Sylvain Huon ◽  
...  

1997 ◽  
Vol 1 (3) ◽  
pp. 571-581 ◽  
Author(s):  
B. Reynolds ◽  
M. Renshaw ◽  
T. H. Sparks ◽  
S. Crane ◽  
S. Hughes ◽  
...  

Abstract. Stream water chemistry in the Cyff and Gwy subcatchments within the headwaters of the River Wye has been monitored regularly since 1980. In the Gwy, which is a predominantly semi-natural grassland catchment, land use has remained relatively static over the monitoring period, whilst the Cyff catchment is more buffered because of base cation inputs from agricultural improvement and ground water sources. Using a variety of statistical techniques, the long-term data are examined for evidence of trends after eliminating seasonal effects. The results highlight some of the difficulties associated with the analysis of longterm water quality data which show considerable variability over a variety of timescales. Some of this variability can be explained in terms of hydrochemical responses to climatic extremes and episodic events such as large atmospheric inputs of seasalts. The long-term fluctuations in solute concentration underline the continuing need for maintaining consistent long-term monitoring at sensitive upland sites if underlying trends related to gradual changes in pollutant deposition or climate are to be detected with any certainty.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 988 ◽  
Author(s):  
Paweł Prokop ◽  
Łukasz Wiejaczka ◽  
Hiambok Jones Syiemlieh ◽  
Rafał Kozłowski

The subtropics within the monsoonal range are distinguished by intensive human activity, which affects stream water chemistry. This paper aims to determine spatio-temporal variations and flowpaths of stream water chemical elements in a long-term anthropogenically-modified landscape, as well as to verify whether the water chemistry of a subtropical elevated shield has distinct features compared to other headwater areas in the tropics. It was hypothesized that small catchments with homogenous environmental conditions could assist in investigating the changes in ions and trace metals in various populations and land uses. Numerous physico-chemical parameters were measured, including temperature, pH, electrical conductivity (EC), dissolved organic carbon (DOC), major ions, and trace metals. Chemical element concentrations were found to be low, with a total dissolved load (TDS) below 52 mg L−1. Statistical tests indicated an increase with significant differences in the chemical element concentration between sites and seasons along with increases of anthropogenic impact. Human influence was clearly visible in the case of cations (Ca2+, K+, Mg2+, Na+) and anions (Cl−, HCO3−, NO3−, SO42−), compared to trace metals. The order of most abundant metals Fe > Zn > Al > Sr was the same in springs and streams, regardless of population density, land use, and season. Principal component analysis (PCA) demonstrated that major ion concentrations in stream water followed the pattern forest < cultivated land < grassland < built-up area. Surface water chemistry of the subtropical elevated shield has mixed features of tropical and temperate zones. Low concentrations of chemical elements; small seasonal differences in headwater streams; and increased concentrations of NO3−, SO42−, DOC, and Zn in the wet monsoon season are similar to those observed in the tropics. The role of long-term cultivation without chemical fertilizers in ions supply to streams is less than in other headwater areas of the tropical zone. Strong control of water chemistry in densely populated built-up areas is analogous to both tropical and temperate regions. Population density or a built-up area may be used as a proxy for the reconstruction or prediction of the anthropogenic impact on stream water chemistry in similar subtropical elevated shields.


Sign in / Sign up

Export Citation Format

Share Document