Investigating Anthropogenic and Geogenic Sources of Groundwater Contamination in a Semi-Arid Alluvial Basin, Goshen Valley, UT, USA

2018 ◽  
Vol 229 (6) ◽  
Author(s):  
Brian J. Selck ◽  
Gregory T. Carling ◽  
Stefan M. Kirby ◽  
Neil C. Hansen ◽  
Barry R. Bickmore ◽  
...  
2012 ◽  
Vol 26 (3) ◽  
pp. 181-199 ◽  
Author(s):  
S. Bel Hadj Salem ◽  
N. Chkir ◽  
K. Zouari ◽  
A. L. Cognard-Plancq ◽  
V. Valles

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Laxman Kumar Duvva ◽  
Kiran Kumar Panga ◽  
Ratnakar Dhakate ◽  
Vurimindi Himabindu

AbstractHydrogeochemical controlling variables for the high rate of groundwater contamination in a shallow hard rock aquifer of the semi-arid region of Medchal District, Telangana State, South India, and its associated health risk to children and adults were studied in detail. A total of 56 groundwater samples were analysed for major ion chemistry in pre- and post-monsoon seasons in 2019 year. Spatial distribution, hydrochemical facies, water–rock interaction, health risk assessment, carcinogenic risk, and principal component analyses were carried out to assess the water quality. Spatial distribution of nitrate and fluoride concentrations, high values were observed in the northern, southern, central, and south-western parts of the region. In terms of NO3−, about 88% and 63% and for F− 45% and 32% of the groundwater samples are non-acceptable limits of nitrate 45 mg/l and fluoride 1.5 mg/l during pre- and post-monsoon seasons, respectively. Modified Gibb’s plot showed the majority of the area is dominated by rock dominance and evaporation mechanisms. Statistical analysis reveals that water chemistry is governed by weathering of feldspar minerals and the cation exchange reaction mechanism. The petro-graphical studies revealed the dominance of plagioclase, orthoclase, quartz, biotite, apatite, and hornblende minerals in the host rock. The factor analysis results reveal that the geogenic and anthropogenic activities contribute to groundwater chemistry. Health risk assessment was carried out by calculating the hazard quotient (HQ) on the basis of intake exposure of groundwater, as per the USEPA. Results were obtained for total hazard index value greater than 1 for adults and children, which causes non-cancerous health effects.


2020 ◽  
Author(s):  
Zaharatu Babika ◽  
Thomas Kjeldsen ◽  
Lee bryant

<p>Groundwater is a scarce yet vital resource in many arid and semi-arid regions of the world. where it serves as water supply for a majority of the population. The quality of this resource is depreciating, however due to pollution levels reaching intolerable limits as a result of unplanned urbanization and industrialization. In this study, the capabilities of two commonly used groundwater vulnerability models, DRASTIC and GOD, are assessed for correctly classifying the risk of hydrocarbon pollution within the city of Kano, located in semi-arid northern Nigeria. Most existing groundwater vulnerability assessment tools have been developed for use in Europe and North America under generally humid conditions; conversely, vulnerability assessment of groundwater in arid and semi-arid is much less developed.<br> Combined analysis of large-scale existing data sources on hydro-meteorological, environmental and anthropogenic factors will be used to evaluate the vulnerability of groundwater resources in Kano, a city of ~4 million people within 137 square kilometres.  In this study, the two models (DRASTIC and GOD) are assessed based on data provided by Nigerian water resources administrations and obtained via field monitoring to detect areas that are vulnerable to groundwater contamination based on the hydrogeological structure and local sources of hydrocarbon contamination. Several groundwater contamination sources have been identified such as automobile shops, household dumpsites, and petrol dispensing stations.Mapping of environmental factors was conducted within the framework of Geographical information systems (GIS), and  preliminary results show a range of very high to moderate vulnerability classes exist within the build-up areas of Kano. A sensitivity evaluation of the various parameters required for each of these models has also been performed to identify the controlling parameters within this semi-arid environment. Building on these results, the next phase of this research will focus on development of a modified vulnerability model based on these identified controlling parameters and model validation using field observations.</p>


2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

2015 ◽  
Vol 35 ◽  
pp. 21-24 ◽  
Author(s):  
Tullia Bonomi ◽  
Letizia Fumagalli ◽  
Gennaro A. Stefania ◽  
Marco Rotiroti ◽  
Federica Pellicioli ◽  
...  

Author(s):  
I.G.C. Kerr ◽  
J.M. Williams ◽  
W.D. Ross ◽  
J.M. Pollard

The European rabbit (Oryctolagus cuniculus) introduced into New Zealand in the 183Os, has consistently flourished in Central Otago, the upper Waitaki, and inland Marlborough, all areas of mediterranean climate. It has proved difficult to manage in these habitats. The 'rabbit problem' is largely confined to 105,000 ha of low producing land mostly in semi arid areas of Central Otago. No field scale modifications of the natural habitat have been successful in limiting rabbit numbers. The costs of control exceed the revenue from the land and continued public funding for control operations appears necessary. A system for classifying land according to the degree of rabbit proneness is described. Soil survey and land classification information for Central Otago is related to the distribution and density of rabbits. This intormation can be used as a basis for defining rabbit carrying capacity and consequent land use constraints and management needs. It is concluded that the natural rabbit carrying capacity of land can be defined by reference to soil survey information and cultural modification to the natural vegetation. Classification of land according to rabbit proneness is proposed as a means of identifying the need for, and allocation of, public funding tor rabbit management. Keywords: Rabbit habitat, rabbit proneness, use of rabbit prone land.


2007 ◽  
Vol 23 (5) ◽  
pp. 546-555 ◽  
Author(s):  
R. Burgos ◽  
L.J. Odens ◽  
R.J. Collier ◽  
L.H. Baumgard ◽  
M.J. VanBaale

Sign in / Sign up

Export Citation Format

Share Document