Semi-Analytical Solutions for Two-Dimensional Transport and Transformation of Contaminants in Soil Medias Associated with Large-Strain Deformation

2018 ◽  
Vol 229 (10) ◽  
Author(s):  
Chuang Yu ◽  
Zezhong Ren ◽  
Junfeng Liu ◽  
Xiaoqing Cai ◽  
Jianjun Ma ◽  
...  
1990 ◽  
Vol 57 (2) ◽  
pp. 298-306 ◽  
Author(s):  
K. W. Neale ◽  
S. C. Shrivastava

The inelastic behavior of solid circular bars twisted to arbitrarily large strains is considered. Various phenomenological constitutive laws currently employed to model finite strain inelastic behavior are shown to lead to closed-form analytical solutions for torsion. These include rate-independent elastic-plastic isotropic hardening J2 flow theory of plasticity, various kinematic hardening models of flow theory, and both hypoelastic and hyperelastic formulations of J2 deformation theory. Certain rate-dependent inelastic laws, including creep and strain-rate sensitivity models, also permit the development of closed-form solutions. The derivation of these solutions is presented as well as numerous applications to a wide variety of time-independent and rate-dependent plastic constitutive laws.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck ◽  
Donald E. Amos

This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isothermal conditions which are located a long distance from the heating. The methods are both efficient numerically and have extreme accuracy, which can be used to provide additional solution verification. The solutions have components that are shown to have physical significance. The extremely precise nature of analytical solutions allows them to be used as prime standards for their respective transient conduction cases. This extreme precision also allows an accurate calculation of heat flux by finite differences between two points of very close proximity which would not be possible with numerical solutions. This is particularly useful near heated surfaces and near corners. Similarly, sensitivity coefficients for parameter estimation problems can be calculated with extreme precision using this same technique. Another contribution of these solutions is the insight that they can bring. Important dimensionless groups are identified and their influence can be more readily seen than with numerical results. For linear problems, basic heating elements on plates, for example, can be solved to aid in understanding more complex cases. Furthermore these basic solutions can be superimposed both in time and space to obtain solutions for numerous other problems. This paper provides an analytical two-dimensional, transient solution for heating over a rectangular region on a homogeneous square plate. Several methods are available for the solution of such problems. One of the most common is the separation of variables (SOV) method. In the standard implementation of the SOV method, convergence can be slow and accuracy lacking. Another method of generating a solution to this problem makes use of time-partitioning which can produce accurate results. However, numerical integration may be required in these cases, which, in some ways, negates the advantages offered by the analytical solutions. The method given herein requires no numerical integration; it also exhibits exponential series convergence and can provide excellent accuracy. The procedure involves the derivation of previously-unknown simpler forms for the summations, in some cases by virtue of the use of algebraic components. Also, a mathematical identity given in this paper can be used for a variety of related problems.


2021 ◽  
Vol 932 ◽  
Author(s):  
Gary R. Hunt ◽  
Jamie P. Webb

The behaviour of turbulent, buoyant, planar plumes is fundamentally coupled to the environment within which they develop. The effect of a background stratification directly influences a plumes buoyancy and has been the subject of numerous studies. Conversely, the effect of an ambient co-flow, which directly influences the vertical momentum of a plume, has not previously been the subject of theoretical investigation. The governing conservation equations for the case of a uniform co-flow are derived and the local dynamical behaviour of the plume is shown to be characterised by the scaled source Richardson number and the relative magnitude of the co-flow and plume source velocities. For forced, pure and lazy plume release conditions the co-flow acts to narrow the plume and reduce both the dilution and the asymptotic Richardson number relative to the classic zero co-flow case. Analytical solutions are developed for pure plumes from line sources, and for highly forced and highly lazy releases from sources of finite width in a weak co-flow. Contrary to releases in quiescent surroundings, our solutions show that all classes of release can exhibit plume contraction and the associated necking. For entraining plumes, a dynamical invariance spatially only occurs for pure and forced releases and we derive the co-flow strengths that lead to this invariance.


2018 ◽  
Vol 24 (6) ◽  
pp. 1821-1848 ◽  
Author(s):  
Yuan Li ◽  
CuiYing Fan ◽  
Qing-Hua Qin ◽  
MingHao Zhao

An elliptical crack subjected to coupled phonon–phason loadings in a three-dimensional body of two-dimensional hexagonal quasicrystals is analytically investigated. Owing to the existence of the crack, the phonon and phason displacements are discontinuous along the crack face. The phonon and phason displacement discontinuities serve as the unknown variables in the generalized potential function method which are used to derive the boundary integral equations. These boundary integral equations governing Mode I, II, and III crack problems in two-dimensional hexagonal quasicrystals are expressed in integral differential form and hypersingular integral form, respectively. Closed-form exact solutions to the elliptical crack problems are first derived for two-dimensional hexagonal quasicrystals. The corresponding fracture parameters, including displacement discontinuities along the crack face and stress intensity factors, are presented considering all three crack cases of Modes I, II, and III. Analytical solutions for a penny-shaped crack, as a special case of the elliptical problem, are given. The obtained analytical solutions are graphically presented and numerically verified by the extended displacement discontinuities boundary element method.


2017 ◽  
Vol 50 (3) ◽  
pp. 951-958 ◽  
Author(s):  
Sen Chen ◽  
Juncheng E ◽  
Sheng-Nian Luo

SLADS(http://www.pims.ac.cn/Resources.html), a parallel code for direct simulations of X-ray scattering of large anisotropic dense nanoparticle systems of arbitrary species and atomic configurations, is presented. Particles can be of arbitrary shapes and dispersities, and interactions between particles are considered. Parallelization is achieved in real space for the sake of memory limitation. The system sizes attempted are up to one billion atoms, and particle concentrations in dense systems up to 0.36. Anisotropy is explored in terms of superlattices. One- and two-dimensional small-angle scattering or diffraction patterns are obtained.SLADSis validated self-consistently or against cases with analytical solutions.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ba-Phu Nguyen ◽  
Ananta Man Singh Pradhan ◽  
Tan Hung Nguyen ◽  
Nhat-Phi Doan ◽  
Van-Quang Nguyen ◽  
...  

Purpose The consolidation behavior of prefabricated vertical drain (PVD)-installed soft deposits mainly depends on the PVD performance. The purpose of this study is to propose a numerical solution for the consolidation of PVD-installed soft soil using the large-strain theory, in which the reduction of discharge capacity of PVD according to depth and time is simultaneously considered. Design/methodology/approach The proposed solution also takes into account the general constitute relationship of soft soil. Subsequently, the proposed solution is applied to analyze and compare with the monitoring data of two cases, one is the experimental test and another is the test embankment in Saga airport. Findings The results show that the reduction of PVD discharge capacity according to depth and time increased the duration required to achieve a certain degree of consolidation. The consolidation rate is more sensitive to the reduction of PVD discharge capacity according to time than that according to the depth. The effects of the reduction of PVD discharge capacity according to depth are more evident when PVD discharge capacity decreases. The predicted results using the proposed numerical solution were validated well with the monitoring data for both cases in verification. Research limitations/implications In this study, the variation of PVD discharge capacity is only considered in one-dimensional consolidation. However, it is challenging to implement a general expression for discharge capacity variation according to time in the two-dimensional numerical solution (two-dimensional plane strain model). This is the motivation for further study. Practical implications A geotechnical engineer could use the proposed numerical solution to predict the consolidation behavior of the drainage-improved soft deposit considering the PVD discharge capacity variation. Originality/value The large-strain consolidation of PVD-installed soft deposits could be predicted well by using the proposed numerical solution considering the PVD discharge capacity variations according to depth and time.


Langmuir ◽  
2009 ◽  
Vol 25 (10) ◽  
pp. 5684-5691 ◽  
Author(s):  
J. M. Gomba ◽  
G. M. Homsy

2016 ◽  
Vol 48 (4) ◽  
pp. 1045-1060 ◽  
Author(s):  
Steven Kou ◽  
Haowen Zhong

AbstractFirst-passage times (FPTs) of two-dimensional Brownian motion have many applications in quantitative finance. However, despite various attempts since the 1960s, there are few analytical solutions available. By solving a nonhomogeneous modified Helmholtz equation in an infinite wedge, we find analytical solutions for the Laplace transforms of FPTs; these Laplace transforms can be inverted numerically. The FPT problems lead to a class of bivariate exponential distributions which are absolute continuous but do not have the memoryless property. We also prove that the density of the absolute difference of FPTs tends to ∞ if and only if the correlation between the two Brownian motions is positive.


Sign in / Sign up

Export Citation Format

Share Document