scholarly journals Carbon–Silica Composites from Sago Waste for the Removal of Chromium, Lead, and Copper from Aqueous Solution: Kinetic and Equilibrium Isotherm Studies

2021 ◽  
Vol 232 (11) ◽  
Author(s):  
Zainab Ngaini ◽  
Yogasunthari Rajan ◽  
Rafeah Wahi
2008 ◽  
Vol 5 (2) ◽  
pp. 233-242 ◽  
Author(s):  
P. Maheswari ◽  
N. Venilamani ◽  
S. Madhavakrishnan ◽  
P. S. Syed Shabudeen ◽  
R. Venckatesh ◽  
...  

The preparation of activated carbon (AC) from sago industry waste is a promising way to produce a useful adsorbent for Cu(II) removal, as well as dispose of sago industry waste. The AC was prepared using sago industry waste with H2SO4and (NH4)2S2O8and physico-chemical properties of AC were investigated. The specific surface area of the activated carbon was determined and its properties studied by scanning electron microscopy (SEM). Adsorptive removal of Cu(II) from aqueous solution onto AC prepared from sago industry waste has been studied under varying conditions of agitation time, metal ion concentration, adsorbent dose and pH to assess the kinetic and equilibrium parameters. Adsorption equilibrium was obtained in 60min for 20 to 50mg/L of Cu(II) concentrations. The Langmuir and Freundlich equilibrium isotherm models were found to provide an excellent fitting of the adsorption data. In Freundlich equilibrium isotherm, the RL values obtained were in the range of 0 to 1 (0.043 to 0.31) for Cu(II) concentration of 10 to 100mg/L, which indicates favorable adsorption of Cu(II) onto Sago waste carbon. The adsorption capacity of Cu(II) (Qo) obtained from the Langmuir equilibrium isotherm model was found to be 32.467 mg/g at pH 4 ± 0.2 for the particle size range of 125–250u. The percent removal increased with an increase in pH from 2 to 4. This adsorbent was found to be effective and economically attractive.


2020 ◽  
Vol 16 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Abdullah M. Asiri ◽  
Nahed S. E. Ahmed

Background: Color effluents generated from the production industry of dyes and pigments and their use in different applications such as textile, paper, leather tanning, and food industries, are high in color and contaminants that damage the aquatic life. It is estimated that about 105 of various commercial dyes and pigments amounted to 7×105 tons are produced annually worldwide. Ultimately, about 10–15% is wasted into the effluents of the textile industry. Chitin is abundant in nature, and it is a linear biopolymer containing acetamido and hydroxyl groups amenable to render it atmospheric by introducing amino and carboxyl groups, hence able to remove different classes of toxic organic dyes from colored effluents. Methods: Chitin was chemically modified to render it amphoteric via the introduction of carboxyl and amino groups. The amphoteric chitin has been fully characterized by FTIR, TGA-DTG, elemental analysis, SEM, and point of zero charge. Adsorption optimization for both anionic and cationic dyes was made by batch adsorption method, and the conditions obtained were used for studying the kinetics and thermodynamics of adsorption. Results: The results of dye removal proved that the adsorbent was proven effective in removing both anionic and cationic dyes (Acid Red 1 and methylene blue (MB)), at their respective optimum pHs (2 for acid and 8 for cationic dye). The equilibrium isotherm at room temperature fitted the Freundlich model for MB, and the maximum adsorption capacity was 98.2 mg/g using 50 mg/l of MB, whereas the equilibrium isotherm fitted the Freundlich and Langmuir model for AR1 and the maximum adsorption capacity was 128.2 mg/g. Kinetic results indicate that the adsorption is a two-step diffusion process for both dyes as indicated by the values of the initial adsorption factor (Ri) and follows the pseudo-second-order kinetics. Also, thermodynamic calculations suggest that the adsorption of AR1 on the amphoteric chitin is an endothermic process from 294 to 303 K. The result indicated that the mechanism of adsorption is chemisorption via an ion-exchange process. Also, recycling of the adsorbent was easy, and its reuse for dye removal was effective. Conclusion: New amphoteric chitin has been successfully synthesized and characterized. This resin material, which contains amino and carboxyl groups, is novel as such chemical modification of chitin hasn’t been reported. The amphoteric chitin has proven effective in decolorizing aqueous solution from anionic and cationic dyes. The adsorption behavior of amphoteric chitin is believed to follow chemical adsorption with an ion-exchange process. The recycling process for few cycles indicated that the loaded adsorbent could be regenerated by simple treatment and retested for removing anionic and cationic dyes without any loss in the adsorbability. Therefore, the study introduces a new and easy approach for the development of amphoteric adsorbent for application in the removal of different dyes from aqueous solutions.


2018 ◽  
Vol 256 ◽  
pp. 489-496 ◽  
Author(s):  
Chunxia Nan ◽  
Jingran Dong ◽  
Hongwu Tian ◽  
Hongmei Shi ◽  
Shigang Shen ◽  
...  

2006 ◽  
Vol 41 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Lua'y Zeatoun ◽  
Munjed Al-Sharif ◽  
Abeer Al-Bsoul

Abstract Tar sands were found to remove significant amounts of phenol from aqueous solution in the presence of titania; about 70% at an initial concentration of 10 ppm. Batch sorption experiments showed that phenol uptake was increased with either an increase in initial phenol concentration, percentage of titania in the sorbent or pre-activation temperature. On the other hand, the presence of soft ions such as sodium, Na+, or potassium, K+, or the increase of solution temperature suppressed the uptake of phenol. Physical pre-activation of the tar sands influenced the adsorption process positively. The sorption process appears to be exothermic and relatively fast; the equilibrium isotherm data were well represented by either Langmuir or Freundlich models.


Sign in / Sign up

Export Citation Format

Share Document