WSN node location based on beetle antennae search to improve the gray wolf algorithm

2022 ◽  
Author(s):  
Xiu-wu Yu ◽  
Lu-ping Huang ◽  
Yong Liu ◽  
Ke Zhang ◽  
Pei Li ◽  
...  
Keyword(s):  
2019 ◽  
Vol 29 (05) ◽  
pp. 2050068
Author(s):  
Rajula Angelin Samuel ◽  
D. Shalini Punithavathani

Autoconfiguration in mobile ad hoc network (MANET) is a challenging task to be accomplished in hostile environment. Moreover, a mobile node in MANET is usually configured with a unique IP address for providing better communication and to connect it with an IP network. Essentially, the nodes in wired networks are autoconfigured using a commonly known Dynamic Host Configuration Protocol (DHCP) server. However, MANET exhibits the intrinsic characteristics (i.e., distributed, dynamic and multi-hop) in nature; hence, it is hard to adopt DHCP server for autoconfiguration of nodes in MANET without applying significant modifications in auto-configuration scheme. This paper proposes an efficient IPV6 Duplicate address Elimination Autoconfiguration protocol for MANETs (IDEAM) which comprises the member and the cluster head (CH) nodes organized in a hierarchical fashion. Further, the proposed protocol considers the global connectivity exhibiting reduced communication overhead among the nodes. Initially, our proposed auto-configuration protocol encourages the Duplicate Address Detection (DAD) operation by selecting a controller node from the prefixed group members using a joining node in the network. In other words, the DAD operation is performed perfectly by a selected controller node on behalf of the new joining node. Thus, our proposed protocol becomes more effective and behaves better in the minimization of overhead by considerably eliminating the DAD messages broadcast in the network. Also, we imposed a new Flower pollination based gray wolf optimization (FPGWO) algorithm for selecting an optimal header among the group members by considering various node parameters (i.e., node location, resources and node density) to avoid unnecessary broadcasting of additional weight messages about each node in the network. The simulation results proved the efficiency of our proposed protocol in terms of scalability and in the minimization of overhead. Also, an effectual method provided by our proposed approach enhances the activity of marginal nodes over the group for healing the network that degrades its performance followed by the splitting and merging operation.


2014 ◽  
Vol 081 (03) ◽  
Author(s):  
Amanda Beckrich
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
pp. 380-390
Author(s):  
Pradipta Kumar Mishra ◽  
Suresh Chandra Satapathy ◽  
Minakhi Rout

Abstract Segmentation of brain image should be done accurately as it can help to predict deadly brain tumor disease so that it can be possible to control the malicious segments of brain image if known beforehand. The accuracy of the brain tumor analysis can be enhanced through the brain tumor segmentation procedure. Earlier DCNN models do not consider the weights as of learning instances which may decrease accuracy levels of the segmentation procedure. Considering the above point, we have suggested a framework for optimizing the network parameters such as weight and bias vector of DCNN models using swarm intelligent based algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA). The simulation results reveals that the WOA optimized DCNN segmentation model is outperformed than other three optimization based DCNN models i.e., GA-DCNN, PSO-DCNN, GWO-DCNN.


Genetics ◽  
2003 ◽  
Vol 163 (3) ◽  
pp. 1177-1191 ◽  
Author(s):  
Gregory A Wilson ◽  
Bruce Rannala

Abstract A new Bayesian method that uses individual multilocus genotypes to estimate rates of recent immigration (over the last several generations) among populations is presented. The method also estimates the posterior probability distributions of individual immigrant ancestries, population allele frequencies, population inbreeding coefficients, and other parameters of potential interest. The method is implemented in a computer program that relies on Markov chain Monte Carlo techniques to carry out the estimation of posterior probabilities. The program can be used with allozyme, microsatellite, RFLP, SNP, and other kinds of genotype data. We relax several assumptions of early methods for detecting recent immigrants, using genotype data; most significantly, we allow genotype frequencies to deviate from Hardy-Weinberg equilibrium proportions within populations. The program is demonstrated by applying it to two recently published microsatellite data sets for populations of the plant species Centaurea corymbosa and the gray wolf species Canis lupus. A computer simulation study suggests that the program can provide highly accurate estimates of migration rates and individual migrant ancestries, given sufficient genetic differentiation among populations and sufficient numbers of marker loci.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2013
Author(s):  
Md Sydur Rahman ◽  
Grace Firsta Lukman ◽  
Pham Trung Hieu ◽  
Kwang-II Jeong ◽  
Jin-Woo Ahn

In this paper, the optimization and characteristics analysis of a three-phase 12/8 switched reluctance motor (SRM) based on a Grey Wolf Optimizer (GWO) for electric vehicles (EVs) application is presented. This research aims to enhance the output torque density of the proposed SRM. Finite element method (FEM) was used to analyze the characteristics and optimization process of the proposed motor. The proposed metaheuristic GWO combines numerous objective functions and design constraints with different weight factors. Maximum flux density, current density, and motor volume are selected as the optimization constraints, which play a significant role in the optimization process. GWO performs optimization for each iteration and sends it to FEM software to analyze the performance before starting another iteration until the optimized value is found. Simulations are employed to understand the characteristics of the proposed motor. Finally, the optimized prototype motor is manufactured and performance is verified by experiment. It is shown that the torque can be increased by 120% for the same outer volume, by using the proposed method.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


2021 ◽  
Vol 1976 (1) ◽  
pp. 012018
Author(s):  
Jihai Luan ◽  
Yong Xia ◽  
Yuancheng Xie ◽  
Dong Zhao ◽  
Zhaoxin Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document