A Novel Approach to Cell Coverage Area Determination for FDMA–CDMA Systems

2005 ◽  
Vol 34 (4) ◽  
pp. 411-439
Author(s):  
F. Hendessi ◽  
Kh. Ghassemi ◽  
A. Ghayoori ◽  
T. A. Gulliver
2017 ◽  
Vol 66 (5) ◽  
pp. 3515-3525 ◽  
Author(s):  
Bo Ai ◽  
Ruisi He ◽  
Guangkai Li ◽  
Ke Guan ◽  
Danping He ◽  
...  

Author(s):  
Purnima K Sharma ◽  
Dinesh Sharma ◽  
Akanksha Gupta

NeoBiota ◽  
2021 ◽  
Vol 68 ◽  
pp. 105-126
Author(s):  
Jorge E. Ramírez-Albores ◽  
David M. Richardson ◽  
Valdir M. Stefenon ◽  
Gustavo A. Bizama ◽  
Marlín Pérez-Suárez ◽  
...  

The Peruvian Peppertree (Schinus molle L.) is an evergreen tree native to semiarid environments of Peru and Bolivia in South America. This tree has been introduced and widely planted for ornamental and forestry purposes in several semiarid regions of the world because its seedlings are easily established and have a high survival rate; it also grows quickly, and it is tolerant of dry climates. We compared the global and regional niches of naturalized and planted populations of S. molle in order to examine the invasive stages and potential distribution of this species in four regions of the world. This work provides a novel approach for understanding the invasion dynamics of S. molle in these areas and elucidates the ecological processes that bring about such invasions. Most naturalized and planted populations were found to be in equilibrium with the environment. In its native range as well as in Australia and South Africa the models of the coverage area of habitat suitability for natural populations were the highest, whereas the coverage area of planted populations was lower. For planted populations in Australia and South Africa, a large percentage of predicted presences fell within sink populations. The invasion stages of S. molle vary across regions in its adventive range; this result may be attributable to residence time as well as climatic and anthropic factors that have contributed to the spread of populations.


2008 ◽  
Vol 57 (2) ◽  
pp. 828-846 ◽  
Author(s):  
Josefina Castaneda-Camacho ◽  
Domingo Lara-Rodriguez
Keyword(s):  

Author(s):  
Ayad Atiyah Abdulkafi ◽  
Sieh Kiong Tiong ◽  
Johnny Koh ◽  
David Chieng ◽  
Alvin Ting

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taesam Lee ◽  
Ju-young Shin

AbstractThe spatial interpolation of precipitation has been employed in a number of fields, including by spatially downscaling the Global Circulation Model (GCM) to a finer scale. Most precipitation events become more sporadic when the coverage area increases (i.e., a portion of the points experience zero precipitation). However, spatial interpolations of precipitation generally ignore these dry areas, and the interpolated grids are filled with certain precipitation amounts. Subsequently, no delineation of dry and wet regions can be made. Therefore, the current study suggested a novel approach to determine dry areas in spatial interpolations of precipitation events by assigning latent negative precipitation (LNP) to points with observed precipitation values of zero. The LNP-assigned points are then employed in a spatial interpolation. After that, the dry region can be determined using the negative region (i.e., points with zero precipitation). The magnitude of LNP can be defined by multiplying the precipitation values of neighboring stations by a tuning parameter. The LNP method and the tuning parameter are tested on weather stations covering South Korea. The results indicate that the proposed LNP method can be suitable for the spatial interpolation of precipitation events by delineating dry and wet regions. Additionally, the tuning parameter plays a special role in that it increases in value with longer precipitation durations and denser networks. A value of 0.5–1.5 can be suggested for the tuning parameter as a rule of thumb when high accuracy for final products of interpolated precipitation is not critical. For future studies, the LNP model derived herein can be tested over much larger areas, such as the United States, and the model can also be easily adopted for other variables with spatially sporadic values.


2019 ◽  
Vol 42 (10) ◽  
pp. 2233-2245
Author(s):  
Marco Nugnes ◽  
Camilla Colombo ◽  
Massimo Tipaldi

2017 ◽  
Vol 16 (2) ◽  
pp. 95
Author(s):  
Alit Winaya ◽  
Gede Sukadarmika ◽  
Linawati Linawati

In WCDMA system, signal service coverage determines quality service of telecommunication network . To give maximum network service at Jl. Tengah I Kerobokan area, thus requiring the study of the arrangement of the cell coverage on BTS Protpeliatan Sector ? and BTS AnyarKaja Sektor ?. The method used is calculation the distance of base station with proper propagation model which suits the condition of both base stations, also antenna azimuth and tilting were given, and simuation using Atoll software to see the predicted coverage area of BTS. As the result, suitable propagation for BTS Protpeliatan Sector ? is Okumurra Hatta model and BTS AnyarKaja Sektor ? is Cost 231 Hatta model, maximum coverage signal service of BTS Protpeliatan Sector ? is 1,17 km and for BTS AnyarKaja Sektor ? is 1,11 km. Requirement of antenna tilt change from 0º to 0,95º for BTS Protpeliatan Sektor ? and for pada BTS AnyarKaja Sektor ?, antenna tilt change from 0º to 1º and change of 30º antenna sector direction from 180º to 210º. From simulation using Atoll software with above parameters, acknowledge that area of Jl. Tengah I Kerobokan already get maximum service with received signal level pass the KPI (Key Performance Indicator) standard.  Dalam sistem WCDMA, cakupan layanan sinyal merupakan penentu kualitas layanan jaringan telekomunikasi. Untuk memberikan layanan jaringan yang  maksimal di area Jl. Tengah I Kerobokan maka dilakukan analisis penataan cakupan layanan sel pada BTS Protpeliatan Sektor ? dan BTS AnyarKaja Sektor ?. Metode yang digunakan yaitu perhitungan jarak cakupan BTS dengan model propagasi yang paling sesuai dengan kondisi kedua BTS, penentuan arah azimuth dan tilting antena, serta simulasi menggunakan Atoll untuk melihat prediksi cakupan layanan BTS. Didapatkan bahwa model propagasi yang sesuai dengan BTS Protpeliatan Sektor ? adalah  model Okumurra Hatta dan BTS AnyarKaja Sektor ? adalah model Cost 231 Hatta, jarak cakupan layanan maksimum BTS Protpeliatan Sektor ? adalah sejauh 1,17 km dan pada BTS AnyarKaja Sektor ? sejauh 1, 11 km. Diperlukan perubahan tilt antena dari 0º menjadi 0,95º  pada BTS Protpeliatan Sektor ? dan perubahan sudut tilt dari 0º menjadi 1º serta perubahan arah sekorisasi antena sebesar 30º dari 180º menjadi 210 º pada BTS AnyarKaja Sektor ?. Dari hasil simulasi yang dilakukan menggunakan software Atoll dengan parameter tersebut, diketahui bahwa area Jl. Tengah I Kerobokan telah mendapatkan layanan yang maksimal dengan level penerimaan sinyal yang telah memenuhi standar KPI (Key Performance Indictator).  


Sign in / Sign up

Export Citation Format

Share Document