An Analysis of Energy Efficiency Improvement Through Wireless Energy Transfer in Wireless Sensor Network

2017 ◽  
Vol 98 (4) ◽  
pp. 3377-3391 ◽  
Author(s):  
M. Dhurgadevi ◽  
P. Meenakshi Devi

Wireless Energy Transfer technique has attracted increasing attention on authorizing the wireless sensor nodes in recent years. In this paper, we consider a remote battery-powered system where a portable charging vehicle is planned to accuse remote sensor system of hubs' arrangement confinements that may result in less charging efficiency for sensor hubs by charging vehicle. In our method, we used a charging vehicle to charge the nodes whenever needed. Instinctively, there is an unavoidable compromise between the charging distance and the vehicle. For these worries, we go for diminishing the reviving process duration, which contains the voyaging time and energizing time. To this end, we demonstrate that the charging vehicle would go along the briefest way directing. Also, we indicate ideal charging area for every remote charging occurrence.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1322 ◽  
Author(s):  
Vrince Vimal ◽  
Madhav J Nigam

Clustering of the sensors in wireless sensor network is done to achieve energy efficiency. The nodes, which are unable to join any cluster, are referred to as isolated nodes and tend to transfer information straight to the base station. It is palpable that isolated nodes and cluster heads communicate with the base station and tend to exhaust their energy leaving behind coverage holes. In this paper, we propose the innovative clustering scheme using mobile sink approach to extend networks lifetime. The proposed (ORP-MS) algorithm is implemented in MATLAB 2017a and the results revealed that the proposed algorithm outdid the existing algorithms in terms networks lifetime and energy efficiency simultaneously achieved high throughput.  


Author(s):  
Hemavathi P ◽  
Nandakumar A. N.

Clustering is one of the operations in the wireless sensor network that offers both streamlined data routing services as well as energy efficiency. In this viewpoint, Particle Swarm Optimization (PSO) has already proved its effectiveness in enhancing clustering operation, energy efficiency, etc. However, PSO also suffers from a higher degree of iteration and computational complexity when it comes to solving complex problems, e.g., allocating transmittance energy to the cluster head in a dynamic network. Therefore, we present a novel, simple, and yet a cost-effective method that performs enhancement of the conventional PSO approach for minimizing the iterative steps and maximizing the probability of selecting a better clustered. A significant research contribution of the proposed system is its assurance towards minimizing the transmittance energy as well as receiving energy of a cluster head. The study outcome proved proposed a system to be better than conventional system in the form of energy efficiency.


Author(s):  
Smriti Joshi ◽  
Anant Kr. Jayswal

Energy efficiency is the kernel issue in the designing of wireless sensor network(WSN) MAC protocols. Energy efficiency is a major consideration while designing wireless sensor network nodes. Most sensor network applications require energy autonomy for the complete lifetime of the node, which may span up to several years. These energy constraints require that the system be built such that Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. Each component consumes minimum possible power, ensure the average successful transmission rate, decrease the data packet average waiting time, and reduce the average energy consumption. Influencing by the design principles of traditional layered protocol stack, current MAC protocol designing for wireless sensor networks (WSN) seldom takes load balance into consideration, which greatly restricts WSN lifetime. As a novel Forwarding Election-based MAC protocol, is presented to prolong WSN lifetime by means of improving energy efficiency and enhancing load balance.


Sign in / Sign up

Export Citation Format

Share Document