Complex Network Modeling and Evolutionary Game Simulation of the Arctic Environmental Emergency Response and Governance

2017 ◽  
Vol 102 (2) ◽  
pp. 951-961 ◽  
Author(s):  
Houming Fan ◽  
Xiaodan Jiang ◽  
Caiyun Li ◽  
Zhongkai Yuan
Marine Policy ◽  
2021 ◽  
Vol 134 ◽  
pp. 104774
Author(s):  
Xin Xu ◽  
Yingying Hou ◽  
Changping Zhao ◽  
Lei Shi ◽  
Yu Gong

2021 ◽  
Author(s):  
Dörthe Handorf ◽  
Ozan Sahin ◽  
Annette Rinke ◽  
Jürgen Kurths

<p>Under the rapid and amplified warming of the Arctic, changes in the occurrence of Arctic weather and climate extremes are evident which have substantial cryospheric and biophysical impacts like floods, droughts, coastal erosion or wildfires. Furthermore, these changes in weather and climate extremes have the potential to further amplify Arctic warming. <br>Here we study extreme cyclone events in the Arctic, which often occur during winter and are associated with extreme warming events that are caused by cyclone-related heat and moisture transport into the Arctic. In that way Arctic extreme cyclones have the potential to retard sea-ice growth in autumn and winter or to initiate an earlier melt-season onset. <br>To get a better understanding of these extreme cyclones and their occurrences in the Arctic, it is important to reveal the related atmospheric teleconnection patterns and understand their underlying mechanisms. In this study, the methodology of complex networks is used to identify teleconnections associated with extreme cyclones events (ECE) over Spitzbergen. We have chosen Spitzbergen, representative for the Arctic North Atlantic region which is a hot spot of Arctic climate change showing also significant recent changes in the occurrence of extreme cyclone events. <br>Complex climate networks have been successfully applied in the analysis of climate teleconnections during the last decade. To analyze time series of unevenly distributed extreme events, event synchronization (ES) networks are appropriate. Using this framework, we analyze the spatial patterns of significant synchronization between extreme cyclone events over the Spitzbergen area and extreme events in sea-level pressure (SLP) in the rest of the Northern hemisphere for the extended winter season from November to March. Based on the SLP fields from the newest atmospheric reanalysis ERA5, we constructed the ES networks over the time period 1979-2019.<br>The spatial features of the complex network topology like Eigenvector centrality, betweenness centrality and network divergence are determined and their general relation to storm tracks, jet streams and waveguides position is discussed. Link bundles in the maps of statistically significant links of ECEs over Spitzbergen with the rest of the Northern Hemisphere have revealed two classes of teleconnections: Class 1 comprises links from various regions of the Northern hemisphere to Spitzbergen, class 2 comprises links from Spitzbergen to various regions of the Northern hemisphere. For each class three specific teleconnections have been determined. By means of composite analysis, the corresponding atmospheric conditions are characterized.<br>As representative of class 1, the teleconnection between extreme events in SLP over the subtropical West Pacific and delayed ECEs at Spitzbergen is investigated. The corresponding lead-lag analysis of atmospheric fields of SLP, geopotential height fields and meridional wind fields suggests that the class 1 teleconnections are caused by tropical forcing of poleward emanating Rossby wave trains. As representative of class 2, the teleconnection between ECEs at Spitzbergen and delayed extreme events in SLP over Northwest Russia is analyzed. The corresponding lead-lag analysis of atmospheric fields of SLP and geopotential height fields from the troposphere to the stratosphere suggests that the class 2 teleconnections are caused by troposphere-stratosphere coupling processes.</p>


2013 ◽  
Vol 10 (12) ◽  
pp. 2808-2812
Author(s):  
Jing Wei ◽  
Hengmin Zhu ◽  
Junchao Feng ◽  
Ruixiao Song ◽  
Zan Xu ◽  
...  

2017 ◽  
Vol 2017 (1) ◽  
pp. 1146-1165
Author(s):  
Johan Marius Ly ◽  
Rune Bergstrøm ◽  
Ole Kristian Bjerkemo ◽  
Synnøve Lunde

Abstract The Norwegian Arctic covers Svalbard, Bear Island, Jan Mayen and the Barents Sea. 80% of all shipping activities in the Arctic are within Norwegian territorial waters and the Exclusive Economic Zone. To reduce the risk for accidents, the Norwegian authorities have established several preventive measures. Among these are ship reporting systems, traffic separation schemes in international waters and surveillance capabilities. If an accident has occurred and an oil spill response operation must be organized - resources, equipment, vessels and manpower from Norwegian and neighboring states will be mobilized. In 2015, the Norwegian Coastal Administration finalized an environmental risk-based emergency response analysis for shipping incidents in the Svalbard, Bear Island and Jan Mayen area. This scenario-based analysis has resulted in a number of recommendations that are currently being implemented to be better prepared for oil spill response operations in the Norwegian Arctic. Further, a large national oil spill response exercise in 2016 was based on one of these scenarios involving at sea and onshore oil spill response at Svalbard. The 2016 exercise, working within the framework of the Agreement on Cooperation on Marine Oil Pollution Preparedness and Response in the Arctic between Canada, Denmark, Finland, Iceland, Norway, Russia, Sweden and the USA (Arctic Council 2013), focused on a shipping incident in the Norwegian waters in the Barents Sea, close to the Russian border. Every year, as part of the Russian – Norwegian Oil Spill Response Agreement and the SAR Agreement in the Barents Sea, combined SAR and oil spill response exercises are organized. These are held every second year in Russia and every second year in Norway. There is an expected increased traffic and possible increased risk for accidents in the Arctic waters. In order to build and maintain an emergency response system to this, cooperation between states, communities, private companies and other stakeholders is essential. It is important that all actors that operate and have a role in the Arctic are prepared and able to help ensure the best possible emergency response plans. We depend on one another, this paper highlights some of the ongoing activities designed to strengthen the overall response capabilities in the Arctic.


ARCTIC ◽  
2018 ◽  
Vol 71 (5) ◽  
Author(s):  
Hajo Eicken ◽  
Andrew Mahoney ◽  
Joshua Jones ◽  
Thomas Heinrichs ◽  
Dayne Broderson ◽  
...  

Increased maritime activities and rapid environmental change pose significant hazards, both natural and technological, to Arctic maritime operators and coastal communities. Currently, U.S. and foreign research activities account for more than half of the sustained hazard-relevant observations in the U.S. maritime Arctic, but hazard assessment and emergency response are hampered by a lack of dedicated hazard monitoring installations in the Arctic. In the present study, we consider a number of different sustained environmental observations associated with research into atmosphere-ice-ocean processes, and discuss how they can help support the toolkit of emergency responders. Building on a case study at Utqiaġvik (Barrow), Alaska, we investigate potential hazards in the seasonally ice-covered coastal zone. Guided by recent incidents requiring emergency response, we analyze data from coastal radar and other observing assets, such as an ice mass balance site and oceanographic moorings, in order to outline a framework for coastal maritime hazard assessments that builds on diverse observing systems infrastructure. This approach links Arctic system science research to operational information needs in the context of the development of a Common Operational Picture (COP) for Maritime Domain Awareness (MDA) relevant for Arctic coastal and offshore regions. A COP in these regions needs to consider threats not typically part of the classic MDA framework, including sea ice or slow-onset hazards. An environmental security and MDA testbed is proposed for northern Alaska, building on research and community assets to help guide a hybrid research-operational framework that supports effective emergency response in Arctic regions.


2011 ◽  
Vol 26 (S1) ◽  
pp. s95-s95
Author(s):  
A. Trufanov ◽  
A. Rossodivita ◽  
M. Aminova ◽  
A. Tikhomirov ◽  
A. Caruso ◽  
...  

IntroductionIn order to counteract disasters and emergencies, it is necessary to build cooperation and collaboration among all entities and actors. Field teams of rescuers require support from the State experiencing a disaster. The responses to the earthquake in Haiti demonstrated a lack of cooperation and collaboration and the rescuers encountered concomitant difficulties. Thus, the problems in the field are not only related to natural and technological aspects, but also social and political contexts. It is time to explore the role of the impact of State power on national and international disasters and emergencies. One modern and fruitful instrument for analysis of these complicated social and group processes is Complex Network modeling. Complex Network tools have been applied successfully to understanding and counteracting such threats as they relate to the spread of infectious diseases and/or to terrorist activities. Another significant utilization of the Complex Network approach is to develop good governance, management, and organizational processes in national and corporate landscapes.MethodsBased on a Complex Network Scope, a novel, three-layer network model of public connections for diverse State regimes for further simulation is proposed. Quantitative assessments and practical processes should be implemented for countering global disasters using international and interdisciplinary teams. Contrary to the known hierarchical layer approach for knowledge acquisition, this new model describes an overall national Society Network by dividing the approach into the three layers: (1) Formal (State), as hierarchical governments structures; (2) Informal (presented by different long-term sustainable link groups); and (3) Informal (aquatinters with short term links (“weak ties”).ResultsAccording to each of these layers, one of three types of network topologies exist: (1) hierarchical; (2) scale-free; and (3) random, respectively.


Sign in / Sign up

Export Citation Format

Share Document