High-elevation ground-layer plant community composition across environmental gradients in spruce-fir forests

2011 ◽  
Vol 26 (6) ◽  
pp. 1089-1101 ◽  
Author(s):  
Sarah E. Stehn ◽  
Christopher R. Webster ◽  
Michael A. Jenkins ◽  
Shibu Jose
2021 ◽  
Author(s):  
R. Kyle Derby ◽  
Brian A. Needelman ◽  
Ana A. Roden ◽  
J. Patrick Megonigal

AbstractDirect measurement of methane emissions is cost-prohibitive for greenhouse gas offset projects, necessitating the development of alternative accounting methods such as proxies. Salinity is a useful proxy for tidal marsh CH4 emissions when comparing across a wide range of salinity regimes but does not adequately explain variation in brackish and freshwater regimes, where variation in emissions is large. We sought to improve upon the salinity proxy in a marsh complex on Deal Island Peninsula, Maryland, USA by comparing emissions from four strata differing in hydrology and plant community composition. Mean CH4 chamber-collected emissions measured as mg CH4 m−2 h−1 ranked as S. alterniflora (1.2 ± 0.3) ≫ High-elevation J. roemerianus (0.4 ± 0.06) > Low-elevation J. roemerianus (0.3 ± 0.07) = S. patens (0.1 ± 0.01). Sulfate depletion generally reflected the same pattern with significantly greater depletion in the S. alterniflora stratum (61 ± 4%) than in the S. patens stratum (1 ± 9%) with the J. roemerianus strata falling in between. We attribute the high CH4 emissions in the S. alterniflora stratum to sulfate depletion likely driven by limited connectivity to tidal waters. Low CH4 emissions in the S. patens stratum are attributed to lower water levels, higher levels of ferric iron, and shallow rooting depth. Moderate CH4 emissions from the J. roemerianus strata were likely due to plant traits that favor CH4 oxidation over CH4 production. Hydrology and plant community composition have significant potential as proxies to estimate CH4 emissions at the site scale.


2021 ◽  
Author(s):  
Robert Kyle Derby ◽  
Brian A Needelman ◽  
Ana A Roden ◽  
J. Patrick Megonigal

Abstract Methane emissions must be directly measured or estimated using methods such as proxies when managing wetlands for greenhouse gas offset activities. Salinity is a useful proxy for tidal marsh CH4 emissions when comparing across a wide range of salinity regimes but does not adequately explain variation in brackish and freshwater regimes where variation in emissions is large. We sought to improve upon the salinity proxy in a marsh complex on Deal Island Peninsula, Maryland, USA by identifying four strata based on hydrology and plant community composition. Mean CH4 chamber-collected emissions measured as mg CH4 m-2 hr-1 ranked as S. alterniflora (1.2 ± 0.3) >> High-elevation J. roemerianus (0.4 ± 0.06) > Low-elevation J. roemerianus (0.3 ± 0.07) = S. patens (0.1 ± 0.01). Sulfate depletion generally reflected the same pattern with significantly greater in the S. alterniflora stratum (61 ± 4%) than in the S. patens stratum (1 ± 9%) with the J. roemerianus strata falling in between. We attribute the high CH4 emissions in the S. alterniflora stratum to sulfate depletion likely driven by limited connectivity to tidal waters. Low CH4 emissions in the S. patens stratum are attributed to lower water levels, higher levels of ferric iron, and shallow rooting depth. Moderate CH4 emissions from the J. roemerianus strata were likely due to plant traits that favor CH4 oxidation over CH4 production. We concluded that stratification by hydrology and plant community composition can be an effective proxy to estimate CH4 emissions at the site scale.


2021 ◽  
Author(s):  
Tanja Strecker ◽  
Annette Jesch ◽  
Dörte Bachmann ◽  
Melissa Jüds ◽  
Kevin Karbstein ◽  
...  

2017 ◽  
Vol 7 (23) ◽  
pp. 10233-10242 ◽  
Author(s):  
Jacob Nabe-Nielsen ◽  
Signe Normand ◽  
Francis K. C. Hui ◽  
Laerke Stewart ◽  
Christian Bay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document