Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization

Metabolomics ◽  
2019 ◽  
Vol 15 (2) ◽  
Author(s):  
Raheem Shahzad ◽  
Abdul Latif Khan ◽  
Muhammad Waqas ◽  
Ihsan Ullah ◽  
Saqib Bilal ◽  
...  
Author(s):  
Nguyễn Thị Bích Đào ◽  
Trần Quang Khánh Vân ◽  
Nguyễn Văn Khanh ◽  
Nguyễn Quang Linh

Khi tình hình bệnh hội chứng tôm chết sớm (EMS) đã gây thiệt hại vô cùng to lớn đối với Nuôi trồng thủy sản thì các giải pháp được đề nghị và áp dụng nhằm hạn chế dịch bệnh. Trong đó, việc tìm hiểu và đưa vi khuẩn có lợi để cạnh tranh và ức chế loài vi khuẩn gây bệnh rất được quan tâm, được cho là giải pháp có nhiều triển vọng phù hợp với điều kiện môi trường, đảm bảo sức khỏe cho con người, cũng như hạn chế được dịch bệnh. Đặc biệt, đưa vi khuẩn Bacillus spp. qua đường tiêu hóa của tôm ngay từ khi mới thả đã hạn chế được mật độ vi khuẩn Vibrio. Nghiên cứu này đã phân lập được các chủng Bacillus subtilis B1, Bacillus subtilis B2, Bacillus amyloliquefaciens B4và thử khả năng đối kháng với vi khuẩn Vibrio parahaemolyticus V1 ở các nồng độ 103, 104, 105, 106 CFU theo dõi ở các thời điểm 6h, 12h, 24h, 48h và 72h. Kết quả cho thấy cả ba chủng vi khuẩn Bacillus trên phân lập được đều có khả năng ức chế tốt vi khuẩn Vibrio parahaemolyticus V1, trong đó vi khuẩn Bacillus amyloliquefaciens B4 làtốt nhất với đường kính vòng kháng khuẩn 52,67 ± 4,31mm ở thời điểm 48h; hai chủng Bacillus subtilis B1, Bacillus subtilis B2 lầnlượt là  49,67 ± 3,15 mm, 44,07 ± 5,19 mm, với mức sai số có ý nghĩa thống kê p < 0,05.


LWT ◽  
2021 ◽  
pp. 111812
Author(s):  
Yu Lu ◽  
Xiangjin Cheng ◽  
Huanhuan Deng ◽  
Shouwen Chen ◽  
Zhixia Ji

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ying Wang ◽  
Bo Zhao ◽  
Yaping Liu ◽  
Linjing Mao ◽  
Xuanming Zhang ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Valliappan Karuppiah ◽  
Lu Zhixiang ◽  
Hongyi Liu ◽  
Murugappan Vallikkannu ◽  
Jie Chen

Abstract Background Retention of agricultural bio-mass residues without proper treatment could affect the subsequent plant growth. In the present investigation, the co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens has been employed for multiple benefits including the enrichment of lignocellulose biodegradation, plant growth, defense potential and disease resistance. Results The Vel1 gene predominantly regulates the secondary metabolites, sexual and asexual development as well as cellulases and polysaccharide hydrolases productions. Overexpression mutant of the Trichoderma asperellum Vel1 locus (TA OE-Vel1) enhanced the activity of FPAase, CMCase, PNPCase, PNPGase, xylanase I, and xylanase II through the regulation of transcription regulating factors and the activation of cellulase and xylanase encoding genes. Further, these genes were induced upon co-cultivation with Bacillus amyloliquefaciens (BA). The co-culture of TA OE-Vel1 + BA produced the best composition of enzymes and the highest biomass hydrolysis yield of 89.56 ± 0.61%. The co-culture of TA OE-Vel1 + BA increased the corn stover degradation by the secretion of cellulolytic enzymes and maintained the C/N ratio of the corn stover amended soil. Moreover, the TA OE-Vel1 + BA increased the maize plant growth, expression of defense gene and disease resistance against Fusarium verticillioides and Cohilohorus herostrophus. Conclusion The co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens could be utilized as a profound and meaningful technique for the retention of agro residues and subsequent plant growth.


Sign in / Sign up

Export Citation Format

Share Document