Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009

2013 ◽  
Vol 21 (1) ◽  
pp. 538-547 ◽  
Author(s):  
Samaneh Sabetghadam ◽  
Farhang Ahmadi-Givi
2019 ◽  
Vol 6 (3-4) ◽  
pp. 7-14
Author(s):  
MARIANA CARMELIA BĂLĂNICĂ DRAGOMIR ◽  
CRISTIAN MUNTENIȚĂ ◽  
AUREL GABRIEL SIMIONESCU ◽  
DANIELA ECATERINA ZECA ◽  
IRYNA KRAMAR ◽  
...  

The cyclic variance of PM10 mass concentration in the urban area in the South-East of Romania has been analysed in the article. SE of Romania is considered to be a territory which has medium level of pollution for a period of last ten years, from 2009 to 2018. The spatial dispersion of PM10 concentration was obtained using the METI-LIS soft wear for each season. The objective of dispersion models is to evaluate how pollutant concentration is spread out taking into account the diffusion. The average measurements of PM10 and meteorological parameters as inputs has been used. An evident seasonal change of PM10 concentrations is observed in the article. In order to establish national measures for the improvement of the atmospheric pollution control it was analysed the mechanism of atmospheric pollution. It was observed that the air quality was overall better in spring and in summer in comparison to the other two periods. With regard to the seasonal variation characteristics of PM10 significant differences for the air quality registered in different months in the researched region were observed. The impact of air temperature on atmospheric pollution was insignificant in spring and autumn; moreover, precipitation was defined as an important influence factor upon the atmospheric pollution. The impact of precipitation on the possibility of atmospheric pollution was obviously different in the four seasons. The research results indicate the meteorological parameters that influence the air pollution become active during the cold seasonal days. It was shown that relative humidity and wind speed are the meteorological parameters that impact the PM10. It was found out that the probability of atmospheric pollution decreased with the increase of air temperature in summer. The research results also testify that the air pollution mapping could be enhanced using atmospheric dispersion models and in-situ measurements.


Oil Shale ◽  
2011 ◽  
Vol 28 (2) ◽  
pp. 337
Author(s):  
J PAVLENKOVA ◽  
M KAASIK ◽  
E-S KERNER ◽  
A LOOT ◽  
R OTS

2021 ◽  
Vol 150 ◽  
pp. 106426
Author(s):  
Jie Tian ◽  
Qiyuan Wang ◽  
Yong Zhang ◽  
Mengyuan Yan ◽  
Huikun Liu ◽  
...  

Author(s):  
Wissanupong Kliengchuay ◽  
Aronrag Cooper Meeyai ◽  
Suwalee Worakhunpiset ◽  
Kraichat Tantrakarnapa

Meteorological parameters play an important role in determining the prevalence of ambient particulate matter (PM) in the upper north of Thailand. Mae Hong Son is a province located in this region and which borders Myanmar. This study aimed to determine the relationships between meteorological parameters and ambient concentrations of particulate matter less than 10 µm in diameter (PM10) in Mae Hong Son. Parameters were measured at an air quality monitoring station, and consisted of PM10, carbon monoxide (CO), ozone (O3), and meteorological factors, including temperature, rainfall, pressure, wind speed, wind direction, and relative humidity (RH). Nine years (2009–2017) of pollution and climate data obtained from the Thai Pollution Control Department (PCD) were used for analysis. The results of this study indicate that PM10 is influenced by meteorological parameters; high concentration occurred during the dry season and northeastern monsoon seasons. Maximum concentrations were always observed in March. The PM10 concentrations were significantly related to CO and O3 concentrations and to RH, giving correlation coefficients of 0.73, 0.39, and −0.37, respectively (p-value < 0.001). Additionally, the hourly PM10 concentration fluctuated within each day. In general, it was found that the reporting of daily concentrations might be best suited to public announcements and presentations. Hourly concentrations are recommended for public declarations that might be useful for warning citizens and organizations about air pollution. Our findings could be used to improve the understanding of PM10 concentration patterns in Mae Hong Son and provide information to better air pollution measures and establish a warning system for the province.


2021 ◽  
Vol 3 (45) ◽  
pp. 943-947
Author(s):  
Hongtao Niu ◽  
◽  
Tao Yu ◽  
Xuexin Li ◽  
Hanna Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document