scholarly journals Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress

2015 ◽  
Vol 23 (5) ◽  
pp. 4742-4755 ◽  
Author(s):  
Ewa Gucwa-Przepióra ◽  
Aleksandra Nadgórska-Socha ◽  
Barbara Fojcik ◽  
Damian Chmura
2005 ◽  
Vol 162 (6) ◽  
pp. 634-649 ◽  
Author(s):  
Fouad Ouziad ◽  
Ulrich Hildebrandt ◽  
Elmon Schmelzer ◽  
Hermann Bothe

Rhizosphere ◽  
2021 ◽  
Vol 18 ◽  
pp. 100325
Author(s):  
Nurudeen Olatunbosun Adeyemi ◽  
Mufutau Olaoye Atayese ◽  
Olalekan Suleiman Sakariyawo ◽  
Jamiu Oladipupo Azeez ◽  
Soremi Paul Abayomi Sobowale ◽  
...  

2009 ◽  
Vol 55 (5) ◽  
pp. 501-514 ◽  
Author(s):  
Elisa Gamalero ◽  
Guido Lingua ◽  
Graziella Berta ◽  
Bernard R. Glick

Heavy metal pollution is a major worldwide environmental concern that has recently motivated researchers to develop a variety of novel approaches towards its cleanup. As an alternative to traditional physical and chemical methods of environmental cleanup, scientists have developed phytoremediation approaches that include the use of plants to remove or render harmless a range of compounds. Both plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can be used to facilitate the process of phytoremediation and the growth of plants in metal-contaminated soils. This review focuses on the recent literature dealing with the effects of plant growth-promoting bacteria and AM fungi on the response of plants to heavy metal stress and points the way to strategies that may facilitate the practical realization of this technology.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 815 ◽  
Author(s):  
Rajni Dhalaria ◽  
Dinesh Kumar ◽  
Harsh Kumar ◽  
Eugenie Nepovimova ◽  
Kamil Kuča ◽  
...  

Heavy metal accumulation in plants is a severe environmental problem, rising at an expeditious rate. Heavy metals such as cadmium, arsenic, mercury and lead are known environmental pollutants that exert noxious effects on the morpho-physiological and biological attributes of a plant. Due to their mobile nature, they have become an extended part of the food chain and affect human health. Arbuscular mycorrhizal fungi ameliorate metal toxicity as they intensify the plant’s ability to tolerate metal stress. Mycorrhizal fungi have vesicles, which are analogous to fungal vacuoles and accumulate massive amount of heavy metals in them. With the help of a pervasive hyphal network, arbuscular mycorrhizal fungi help in the uptake of water and nutrients, thereby abating the use of chemical fertilizers on the plants. They also promote resistance parameters in the plants, secrete a glycoprotein named glomalin that reduces the metal uptake in plants by forming glycoprotein–metal complexes, and improve the quality of the soil. They also assist plants in phytoremediation by increasing the absorptive area, increase the antioxidant response, chelate heavy metals and stimulate genes for protein synthesis that reduce the damage caused by free radicals. The current manuscript focuses on the uptake of heavy metals, accumulation, and arbuscular mycorrhizal impact in ameliorating heavy metal stress in plants.


Sign in / Sign up

Export Citation Format

Share Document