scholarly journals Identification and characterization of key circadian clock genes of tobacco hairy roots: putative regulatory role in xenobiotic metabolism

2017 ◽  
Vol 25 (2) ◽  
pp. 1597-1608 ◽  
Author(s):  
Lucas G. Sosa Alderete ◽  
Mario E. Guido ◽  
Elizabeth Agostini ◽  
Paloma Mas
2012 ◽  
Vol 12 (1) ◽  
pp. 172 ◽  
Author(s):  
Felipe Yon ◽  
Pil-Joon Seo ◽  
Jae Ryu ◽  
Chung-Mo Park ◽  
Ian T Baldwin ◽  
...  

2014 ◽  
Vol 8 (2) ◽  
pp. 760-774 ◽  
Author(s):  
Harry P. Winarto ◽  
Lim Chee Liew ◽  
Peter M. Gresshoff ◽  
Paul T. Scott ◽  
Mohan B. Singh ◽  
...  

1998 ◽  
Vol 18 (10) ◽  
pp. 6142-6151 ◽  
Author(s):  
Kiho Bae ◽  
Choogon Lee ◽  
David Sidote ◽  
Keng-yu Chuang ◽  
Isaac Edery

ABSTRACT The Clock gene plays an essential role in the manifestation of circadian rhythms (≅24 h) in mice and is a member of the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) superfamily of transcription factors. Here we report the characterization of a novelDrosophila bHLH-PAS protein that is highly homologous to mammalian CLOCK. (Similar findings were recently described by Allada et al. Cell 93:791–804, 1998, and Darlington et al., Science 280:1599–1603, 1998.) Transcripts from this putative Clockortholog (designated dClock) undergo daily rhythms in abundance that are antiphase to the cycling observed for the RNA products from the Drosophila melanogaster circadian clock genes period (per) and timeless(tim). Furthermore, dClock RNA cycling is abolished and the levels are at trough values in the absence of either PER or TIM, suggesting that these two proteins can function as transcriptional activators, a possibility which is in stark contrast to their previously characterized role in transcriptional autoinhibition. Finally, the temporal regulation of dClock expression is quickly perturbed by shifts in light-dark cycles, indicating that this molecular rhythm is closely connected to the photic entrainment pathway. The isolation of a Drosophila homolog ofClock together with the recent discovery of mammalian homologs of per indicate that there is high structural conservation in the integral components underlying circadian oscillators in Drosophila and mammals. Nevertheless, because mammalian Clock mRNA is constitutively expressed, our findings are a further example of striking differences in the regulation of putative circadian clock orthologs in different species.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanlei Yue ◽  
Ze Jiang ◽  
Enoch Sapey ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Abstract Background In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. Results We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. Conclusions These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


2021 ◽  
pp. 102866
Author(s):  
Kun Xiang ◽  
Zhiwei Xu ◽  
Yu-Qian Hu ◽  
Yi-Sheng He ◽  
Guo-Cui Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document