Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a Pseudomonas strain for coal-based ethylene glycol industry wastewater treatment

2017 ◽  
Vol 24 (12) ◽  
pp. 11435-11445 ◽  
Author(s):  
Cong Du ◽  
Chong-Wei Cui ◽  
Shan Qiu ◽  
Sheng-Nan Shi ◽  
Ang Li ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 650 ◽  
Author(s):  
Xiefa Song ◽  
Xiaohan Yang ◽  
Eric Hallerman ◽  
Yuli Jiang ◽  
Zhitao Huang

The effects of hydraulic retention time (HRT) and influent nitrate-N concentration on nitrogen removal and the microbial community composition of an aerobic denitrification reactor treating recirculating marine aquaculture system effluent were evaluated. Results showed that over 98% of nitrogen was removed and ammonia-N and nitrite-N levels were below 1 mg/L when influent nitrate-N was below 150 mg/L and HRT over 5 h. The maximum nitrogen removal efficiency and nitrogen removal rate were observed at HRT of 6 or 7 h when influent nitrate-N was 150 mg/L. High-throughput DNA sequencing analysis revealed that the microbial phyla Proteobacteria and Bacteroidetes were predominant in the reactor, with an average relative total abundance above 70%. The relative abundance of denitrifying bacteria of genera Halomonas and Denitratisoma within the reactor decreased with increasing influent nitrate-N concentrations. Our results show the presence of an aerobically denitrifying microbial consortium with both expected and unexpected members, many of them relatively new to science. Our findings provide insights into the biological workings and inform the design and operation of denitrifying reactors for marine aquaculture systems.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


1998 ◽  
Vol 38 (1) ◽  
pp. 1-7 ◽  
Author(s):  
M. C. M. Van Loosdrecht ◽  
M. S. M. Jetten

Nitrogen conversion processes are essential for most wastewater treatment systems. Due to the many possible conversions, and the complexity of analysing the reactions under actual conditions, there is much room for confusion. This review provides an overview of the possible microbiological nitrogen conversions described in literature. The relevance of these conversions with respect to wastewater treatment processes is discussed. Rates described for aerobic denitrification or denitrification by autotrophic nitrifiers are so low that these conversions probably do not play a significant role under practical conditions. Heterotrophic nitrification may be of relevance only when the wastewater contains a high COD/N ratio (>10). Anaerobic ammonium oxidation can occur in fully autotrophic systems with very long sludge retention times or biofilm systems. This conversion offers great opportunities since it allows us to denitrify with ammonium as electron donor, i.e. no organic substrate is needed in the nitrogen removal process.


Sign in / Sign up

Export Citation Format

Share Document