Independent and interactive effects of reduced seawater pH and oil contamination on subsurface sediment bacterial communities

2018 ◽  
Vol 25 (32) ◽  
pp. 32756-32766 ◽  
Author(s):  
António Louvado ◽  
Francisco J. R. C. Coelho ◽  
Hélder Gomes ◽  
Daniel F. R. Cleary ◽  
Ângela Cunha ◽  
...  
2018 ◽  
Vol 90 (12) ◽  
pp. 2022-2029 ◽  
Author(s):  
Valdis Krumins ◽  
Weimin Sun ◽  
Jia Guo ◽  
Staci Capozzi ◽  
Donna E. Fennell ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0215767 ◽  
Author(s):  
François Thomas ◽  
James T. Morris ◽  
Cathleen Wigand ◽  
Stefan M. Sievert

2015 ◽  
Vol 21 (5) ◽  
pp. 1871-1886 ◽  
Author(s):  
Francisco J. R. C. Coelho ◽  
Daniel F. R. Cleary ◽  
Rui J. M. Rocha ◽  
Ricardo Calado ◽  
José M. Castanheira ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hanna Sinkko ◽  
Iina Hepolehto ◽  
Christina Lyra ◽  
Johanna M. Rinta-Kanto ◽  
Anna Villnäs ◽  
...  

Abstract Coastal hypoxia is a major environmental problem worldwide. Hypoxia-induced changes in sediment bacterial communities harm marine ecosystems and alter biogeochemical cycles. Nevertheless, the resistance of sediment bacterial communities to hypoxic stress is unknown. We investigated changes in bacterial communities during hypoxic-anoxic disturbance by artificially inducing oxygen deficiency to the seafloor for 0, 3, 7, and 48 days, with subsequent molecular biological analyses. We further investigated relationships between bacterial communities, benthic macrofauna and nutrient effluxes across the sediment-water-interface during hypoxic-anoxic stress, considering differentially abundant operational taxonomic units (OTUs). The composition of the moderately abundant OTUs changed significantly after seven days of oxygen deficiency, while the abundant and rare OTUs first changed after 48 days. High bacterial diversity maintained the resistance of the communities during oxygen deficiency until it dropped after 48 days, likely due to anoxia-induced loss of macrofaunal diversity and bioturbation. Nutrient fluxes, especially ammonium, correlated positively with the moderate and rare OTUs, including potential sulfate reducers. Correlations may reflect bacteria-mediated nutrient effluxes that accelerate eutrophication. The study suggests that even slightly higher bottom-water oxygen concentrations, which could sustain macrofaunal bioturbation, enable bacterial communities to resist large compositional changes and decrease the harmful consequences of hypoxia in marine ecosystems.


Plant Biology ◽  
2016 ◽  
Vol 18 (5) ◽  
pp. 824-834 ◽  
Author(s):  
D. F. R. Cleary ◽  
A. R. M. Polónia ◽  
A. I. Sousa ◽  
A. I. Lillebø ◽  
H. Queiroga ◽  
...  

Author(s):  
A. Shore ◽  
R. D. Day ◽  
J. A. Stewart ◽  
C.A. Burge

Ocean acidification (OA) threatens the growth and function of coral reef ecosystems. A key component to coral health is the microbiome, but little is known about the impact of OA on coral microbiomes. A submarine CO2 vent at Maug Island in the Northern Marianas Islands provides a natural pH gradient to investigate coral responses to long-term OA conditions. Three coral species (Pocillopora eydouxi, Porites lobata, and Porites rus) were sampled from three sites where mean seawater pH is 8.04, 7.98, and 7.94. We characterized coral bacterial communities (using 16S rRNA gene sequencing) and determined pH of the extracellular calcifying fluid (ECF) (using skeletal boron isotopes) across the seawater pH gradient. Bacterial communities of both Porites species stabilized (decreases in community dispersion) with decreased seawater pH, coupled with large increases in the abundance of Endozoicomonas, an endosymbiont. P. lobata experienced a significant decrease in ECF pH near the vent, whereas P. rus experienced a trending decrease in ECF pH near the vent. By contrast, Pocillopora exhibited bacterial community destabilization (increases in community dispersion), with significant decreases in Endozoicomonas abundance, while its ECF pH remained unchanged across the pH gradient. Our study shows that OA has multiple consequences on Endozoicomonas abundance and suggests that Endozoicomonas abundance may be an indicator of coral response to OA. We reveal an interesting dichotomy between two facets of coral physiology (regulation of bacterial communities and regulation of calcification), highlighting the importance of multidisciplinary approaches to understanding coral health and function in a changing ocean. IMPORTANCE Ocean acidification (OA) is a consequence of anthropogenic CO2 emissions that is negatively impacting marine ecosystems such as coral reefs. OA affects many aspects of coral physiology, including growth (i.e. calcification) and disrupting associated bacterial communities. Coral-associated bacteria are important for host health, but it remains unclear how coral-associated bacterial communities will respond to future OA conditions. We document changes in coral-associated bacterial communities and changes to calcification physiology with long-term exposure to decreases in seawater pH that are environmentally relevant under mid-range IPCC emission scenarios (0.1 pH units). We also find species-specific responses that may reflect different responses to long-term OA. In Pocillopora, calcification physiology was highly regulated despite changing seawater conditions. In Porites spp., changes in bacterial communities do not reflect a breakdown of coral-bacterial symbiosis. Insights into calcification and host-microbe interactions are critical to predicting the health and function of different coral taxa to future OA conditions.


Pedosphere ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 817-831
Author(s):  
Yuanyuan YANG ◽  
Yin ZHOU ◽  
Zhou SHI ◽  
Raphael A. VISCARRA ROSSEL ◽  
Zongzheng LIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document