Micro-aeration with hollow fiber membrane enhanced the nitrogen removal in constructed wetlands

2019 ◽  
Vol 27 (21) ◽  
pp. 25877-25885 ◽  
Author(s):  
Xinshan Song ◽  
Yufeng Zhao ◽  
Yuhui Wang ◽  
Zhihao Si ◽  
Xiaoyan Ge ◽  
...  
2013 ◽  
Vol 361-363 ◽  
pp. 814-817
Author(s):  
Gang Li ◽  
Jun Yu ◽  
Yan Hao Zhang ◽  
Lei Gao ◽  
Hua Zhang

A hollow fiber membrane biofilm reactor (MBfR) using Polyethylene (PE) membranes was investigated for denitrification in nitrate-contimanitated drinking water. The reactor was operated over 85 days with influent nitrate loading increasing gradually. The result showed that maximum of nitrate denitrification rate achieved was 3.84 g NO3ˉ-N/m3/d (1.36 g NO3ˉ-N/m2/d) and the total nitrogen removal was more than 96%. The results also showed that the membrane pollution was mainly caused by the mineral sedimentation and EPS.


1992 ◽  
Vol 25 (10) ◽  
pp. 231-240 ◽  
Author(s):  
C. Chiemchaisri ◽  
Y. K. Wong ◽  
T. Urase ◽  
K. Yamamoto

In this study, organic stabilization and nitrogen removal were investigated using a household type hollow fiber membrane separation bioreactor of 6 2 1 volume. The process employed direct solid-liquid separation by hollow fiber membrane inside an activated sludge aeration tank. By providing highly turbulent conditions within the separation zone in conjunction with Jet aerating installation inside the membrane module, sludge accumulation on the membrane surface and inside the module can be reduced. Permeate flux obtained after 330 days of operation was 0.2 m/d under intermittent suction. High degree of organic stabilization was obtained in the system by operation without sludge wastage except for sampling purposes. Continuous and intermittent aeration modes were investigated in the study. The average effluent COD concentration of 20.8 and 16.5 mg/l were observed during continuous and intermittent aerating application respectively. Degree of nitrification depended upon DO concentration of mixed liquor during aeration period. Introduction of intermittent aeration enhanced total nitrogen removal up to 80% or more by simultaneous nitrification and denitrification, resulting in average of 4.9 mg/l of total nitrogen in the effluent. Increase in DO in aeration period from 1.5–2 mg/l to 4–5 mg/l improved percentage of nitrogen removal to more than 90%. Rejection of 4–6 log virus concentration by gel layer formed on the membrane surface was also observed.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 365-371 ◽  
Author(s):  
J.-H. Shin ◽  
B.-I. Sang ◽  
Y.-C. Chung ◽  
Y.-K. Choung

The objective of this study was to develop an integrated nitrogen treatment system using autotrophic organisms. A treatment system consists of an aerobic hollow-fiber membrane biofilm reactor (HfMBR) and anaerobic HfMBR. In the aerobic HfMBR, a mixture gas of air and O2 was supplied through the fibers for nitrification. Denitrification occurred in the anaerobic HfMBR using H2 as the electron donor. The treatment system was continuously operated for 190 days. NH4-N removal efficiencies ranging from 95% to 97% were achieved at NH4-N concentrations of influent ranging from 50 to 100 mg N/L. When glucose was added to the influent, the simultaneous nitrification and denitrification occurred in the aerobic HfMBR, and nitrogen removal rates were changed according to the COD/NH4-N ratio of influent. In the anaerobic HfMBR, autotrophic denitrification using H2 occurred and the removal rates achieved in this study were 23–58 mg N/m2 d. In this study, the achieved removal efficiency was lower than other study findings; however, the result suggested that this hybrid HfMBR system can be used effectively for nitrogen removal in oligotrophic water.


2012 ◽  
Vol 27 (9) ◽  
pp. 951-955
Author(s):  
Chun-Li YANG ◽  
Qi-Ming XU ◽  
Ming GONG ◽  
Wei LIU

2021 ◽  
Vol 8 (8) ◽  
pp. 104
Author(s):  
Gerardo Catapano ◽  
Juliane K. Unger ◽  
Elisabetta M. Zanetti ◽  
Gionata Fragomeni ◽  
Jörg C. Gerlach

Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state. In this study, we characterized the intrinsic kinetics of lidocaine elimination and adsorption by porcine liver cells cultured in 3D four-compartment hollow fiber membrane network perfusion bioreactors. Models of lidocaine transport and biotransformation were used to extract intrinsic kinetic information from response to lidocaine bolus of bioreactor versus adhesion cultures. Different from 2D adhesion cultures, cells in the bioreactors are organized in liver-like aggregates. Adsorption on bioreactor constituents significantly affected lidocaine elimination and was effectively accounted for in kinetic analysis. Lidocaine elimination and cellular monoethylglicinexylidide biotransformation featured first-order kinetics with near-to-in vivo cell-specific capacity that was retained for times suitable for clinical assist and drug screening. Different from 2D cultures, cells in the 3D bioreactors challenged with lidocaine were exposed to close-to-physiological lidocaine and monoethylglicinexylidide concentration profiles. Kinetic analysis suggests bioreactor technology feasibility for preclinical drug screening and patient assist and that drug adsorption should be accounted for to assess cell state in different cultures and when laboratory bioreactor design and performance is scaled-up to clinical use or toxicological drug screening.


Sign in / Sign up

Export Citation Format

Share Document