Transforming pods of the species Capparis flexuosa into effective biosorbent to remove blue methylene and bright blue in discontinuous and continuous systems

Author(s):  
Yamil L. de O. Salomón ◽  
Jordana Georgin ◽  
Dison S. P. Franco ◽  
Matias S. Netto ◽  
Edson L. Foletto ◽  
...  



1971 ◽  
Vol 6 (3) ◽  
pp. 51-62
Author(s):  
Dennis Duffy
Keyword(s):  


1996 ◽  
Vol 191 (5) ◽  
pp. 781-793 ◽  
Author(s):  
A. Arpaci


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 369 ◽  
Author(s):  
Arumugam Saravanan ◽  
Moorthy Maruthapandi ◽  
Poushali Das ◽  
John H. T. Luong ◽  
Aharon Gedanken

Carbon dots (CDs) were obtained from medicinal turmeric leaves (Curcuma longa) by a facile one-step hydrothermal method and evaluated for their bactericidal activities against two gram-negative; Escherichia coli, Klebsiella pneumoniae, and two gram-positive counterparts; Staphylococcus aureus, S. epidermidis. The CDs exhibited spherical shapes with a mean size of 2.6 nm. The fluorescence spectra of CDs revealed intense fluorescence at λex/em = 362/429 nm with a bright blue color in an aqueous solution. The CDs showed strong photostability under various environmental conditions (pH, salt, and UV-radiation). The complete bactericidal potency of CDs was 0.25 mg/mL for E.coli and S. aureus after 8 h of exposure, while for K. pneumoniae, and S. epidermidis, the CDs at 0.5 mg/mL good antibacterial effect within 8 h and complete eradication after 24 h of exposure is observed. The release of reactive oxygen species played a crucial role in the death of the bacterial cell. The present study provides a strategy for the preparation of CDs from a medicinal plant and their potential antibacterial activities against four common contagious pathogens.



Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 616
Author(s):  
Marek Berezowski ◽  
Marcin Lawnik

Research using chaos theory allows for a better understanding of many phenomena modeled by means of dynamical systems. The appearance of chaos in a given process can lead to very negative effects, e.g., in the construction of bridges or in systems based on chemical reactors. This problem is important, especially when in a given dynamic process there are so-called hidden attractors. In the scientific literature, we can find many works that deal with this issue from both the theoretical and practical points of view. The vast majority of these works concern multidimensional continuous systems. Our work shows these attractors in discrete systems. They can occur in Newton’s recursion and in numerical integration.



Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 293
Author(s):  
José M. Acosta-Cuevas ◽  
José González-García ◽  
Mario García-Ramírez ◽  
Víctor H. Pérez-Luna ◽  
Erick Omar Cisneros-López ◽  
...  

Photopolymerized microparticles are made of biocompatible hydrogels like Polyethylene Glycol Diacrylate (PEGDA) by using microfluidic devices are a good option for encapsulation, transport and retention of biological or toxic agents. Due to the different applications of these microparticles, it is important to investigate the formulation and the mechanical properties of the material of which they are made of. Therefore, in the present study, mechanical tests were carried out to determine the swelling, drying, soluble fraction, compression, cross-linking density (Mc) and mesh size (ξ) properties of different hydrogel formulations. Tests provided sufficient data to select the best formulation for the future generation of microparticles using microfluidic devices. The initial gelation times of the hydrogels formulations were estimated for their use in the photopolymerization process inside a microfluidic device. Obtained results showed a close relationship between the amount of PEGDA used in the hydrogel and its mechanical properties as well as its initial gelation time. Consequently, it is of considerable importance to know the mechanical properties of the hydrogels made in this research for their proper manipulation and application. On the other hand, the initial gelation time is crucial in photopolymerizable hydrogels and their use in continuous systems such as microfluidic devices.



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2437
Author(s):  
Akpeko Gasonoo ◽  
Hyeon-Sik Ahn ◽  
Eun-Jeong Jang ◽  
Min-Hoi Kim ◽  
Jin Seog Gwag ◽  
...  

This study proposes front colored glass for building integrated photovoltaic (BIPV) systems based on multi-layered derivatives of glass/MoO3/Al2O3 with a process technology developed to realize it. Molybdenum oxide (MoO3) and aluminum oxide (Al2O3) layers are selected as suitable candidates to achieve thin multi-layer color films, owing to the large difference in their refractive indices. We first investigated from a simulation based on wave optics that the glass/MoO3/Al2O3 multi-layer type offers more color design freedom and a cheaper fabrication process when compared to the glass/Al2O3/MoO3 multi-layer type. Based on the simulation, bright blue and green were primarily fabricated on glass. It is further demonstrated that brighter colors, such as yellow and pink, can be achieved secondarily with glass/MoO3/Al2O3/MoO3 due to enhanced multi-interfacial reflections. The fabricated color glasses showed the desired optical properties with a maximum transmittance exceeding 80%. This technology exhibits promising potential in commercial BIPV system applications.



1985 ◽  
Vol 55 (2) ◽  
pp. 280-282 ◽  
Author(s):  
George O. Poinar ◽  
Roberta T. Hess ◽  
Jan H. Stock

First record of iridovirus infections of terrestrial isopods (Armadillidium vulgare and Porcellio scaber) in Europe (The Netherlands). Infested specimens can be detected by their bright blue color.



2020 ◽  
Vol 81 (10) ◽  
pp. 2109-2126 ◽  
Author(s):  
Seyed Omid Ahmadinejad ◽  
Seyed Taghi Omid Naeeni ◽  
Zahra Akbari ◽  
Sara Nazif

Abstract One of the major pollutants in leachate is phenol. Due to safety and environmental problems, removal of phenol from leachate is essential. Most of the adsorption studies have been conducted in batch systems. Practically, large-scale adsorption is carried out in continuous systems. In this research, the adsorption method has been used for phenol removal from leachate by using walnut shell activated carbon (WSA) and coconut shell activated carbon (CSA) as adsorbents in a fixed-bed column. The effect of adsorbent bed depth, influent phenol concentration and type of adsorbent on adsorption was explored. By increasing the depth of the adsorbent bed in the column, phenol removal efficiency and saturation time increase significantly. Also, by increasing the influent concentration, saturation time of the column decreases. To predict the column performance and describe the breakthrough curve, three kinetic models of Yon-Nelson, Adams-Bohart and Thomas were applied. The results of the experiments indicate that there is a good match between the results of the experiment and the predicted results of the models.



Sign in / Sign up

Export Citation Format

Share Document