Soil nutrient variability mediates the effects of erosion on soil microbial communities: results from a modified topsoil removal method in an agricultural field in Yunnan plateau, China

Author(s):  
Ruihuan Zhang ◽  
Li Rong ◽  
Lanlan Zhang
FACETS ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 389-406
Author(s):  
James M.C. Jones ◽  
Elizabeth A. Webb ◽  
Michael D.J. Lynch ◽  
Trevor C. Charles ◽  
Pedro M. Antunes ◽  
...  

Carbonatites are unusual alkaline rocks with diverse compositions. Although previous work has characterized the effects these rocks have on soils and plants, little is known about their impacts on local ecosystems. Using a deposit within the Great Lakes–St. Lawrence forest in northern Ontario, Canada, we investigated the effect of a carbonatite on soil chemistry and on the structure of plant and soil microbial communities. This was done using a vegetation survey conducted above and around the deposit, with corresponding soil samples collected for determining soil nutrient composition and for assessing microbial community structure using 16S/ITS Illumina Mi-Seq sequencing. In some soils above the deposit a soil chemical signature of the carbonatite was found, with the most important effect being an increase in soil pH compared with the non-deposit soils. Both plants and microorganisms responded to the altered soil chemistry: the plant communities present in carbonatite-impacted soils were dominated by ruderal species, and although differences in microbial communities across the surveyed areas were not obvious, the abundances of specific bacteria and fungi were reduced in response to the carbonatite. Overall, the deposit seems to have created microenvironments of relatively basic soil in an otherwise acidic forest soil. This study demonstrates for the first time how carbonatites can alter ecosystems in situ.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ruoyu Li ◽  
Ziqin Pang ◽  
Yongmei Zhou ◽  
Nyumah Fallah ◽  
Chaohua Hu ◽  
...  

Organic fertilizers are critically important to soil fertility, microbial communities, and sustainable agricultural strategies. We compared the effect of two fertilizer groups (organic+chemical fertilizer: OM, chemical fertilizer: CK) on sugarcane growth, by observing the difference in microbial communities and functions, soil nutrient status, and agronomic characters of sugarcane. The results showed that the sugar content and yield of sugarcane increased significantly under organic fertilizer treatment. We believe that the increased soil nutrient status and soil microorganisms are the reasons for this phenomenon. In addition, redundancy analysis (RDA) shows that the soil nutrient condition has a major impact on the soil microbial community. In comparison with CK, the species richness of Acidobacteria, Proteobacteria, Chloroflexi, and Gemmatimonadetes as well as the functional abundance of nucleotide metabolism and energy metabolism increased significantly in the OM field. Moreover, compared with CK, genes related to the absorption and biosynthesis of sulfate were more prominent in OM. Therefore, consecutive organic fertilizer application could be an effective method in reference to sustainable production of sugarcane.


2013 ◽  
Vol 79 (17) ◽  
pp. 5291-5301 ◽  
Author(s):  
Mariana Silvia Cretoiu ◽  
Gerard W. Korthals ◽  
Johnny H. M. Visser ◽  
Jan Dirk van Elsas

ABSTRACTA long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil towardVerticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular towardVerticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and theOxalobacteraceaewere affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for theOxalobacteraceaewere specifically related to significant upshifts in the abundances of the speciesDuganella violaceinigraandMassilia plicata. These effects of chitin persisted over the time of the experiment.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245626
Author(s):  
Huan Niu ◽  
Ziqin Pang ◽  
Nyumah Fallah ◽  
Yongmei Zhou ◽  
Caifang Zhang ◽  
...  

The dynamics of soil microbial communities are important for plant health and productivity. Soil microbial communities respond differently to fertilization. Organic water soluble fertilizer is an effective soil improver, which can effectively improve soil nutrient status and adjust soil pH value. However, little is known about the effects of water soluble fertilizers on soil microbial community, and the combined effects on soil nutrients and sugarcane productivity. Therefore, this study sought to assess the effects of water soluble fertilizer (1,050 kg/hm2 (WS1), 1,650 kg/hm2 (WS2)) and mineral fertilizer (1,500 kg/hm2 (CK)) on the soil microbial community, soil nutrients and crop yield of sugarcane. The results showed that compared with CK, the application of water soluble fertilizers (WS1 and WS2) alleviated soil acidity, increased the OM, DOC, and AK contents in the soil, and further improved agronomic parameters and sugarcane yield. Both WS1 and WS2 treatments significantly increased the species richness of microorganisms, especially the enrichment of beneficial symbiotic bacteria such as Acidobacteria and Planctomycetes, which are more conducive to the healthy growth of plants. Furthermore, we found that soil nutrient contents were associated with soil microbial enrichment. These results indicate that water soluble fertilizer affects the enrichment of microorganisms by improving the nutrient content of the soil, thereby affecting the growth and yield of sugarcane. These findings therefore suggest that the utilization of water soluble fertilizer is an effective agriculture approach to improve soil fertility.


2015 ◽  
Vol 12 (18) ◽  
pp. 5537-5546 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the phospholipid fatty acids (PLFAs) abundance especially in the N2P (100 kg ha−1 yr−1 of N +50 kg ha−1 yr−1 of P) treatment; the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK (control). Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. These findings indicate that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


Sign in / Sign up

Export Citation Format

Share Document