scholarly journals Life cycle assessment of aquaculture bivalve shellfish production — a critical review of methodological trends

Author(s):  
Johan Andrés Vélez-Henao ◽  
Franz Weinland ◽  
Norbert Reintjes

Abstract Purpose The increase of shellfish production has raised environmental concerns, i.e., enrichment and redistribution of nutrients and energy consumption. Efforts assessing the environmental burdens arising from the expansion of shellfish production have been made using the life cycle assessment (LCA) methodology. Although LCA has been extensively applied and reviewed in aquaculture systems, shellfish production remains scarcely studied. The objective of this review is to identify methodological trends, highlight gaps and limitations, and provide guidelines for future studies. Methods A systematic literature review was applied to scientific studies published up to 2021. A total of 13 documents were shorted by abstract and full text-screening. Literature meeting the inclusion criteria were further analyzed in six different aspects of a LCA (functional unit, system boundaries, data and data quality, allocation, impact assessment methods, interpretation methods). Discussion and guidelines are provided for each reviewed aspect. Results and discussions Shellfish LCAs differ considerably from other aquaculture studies mainly because shellfish avoids the allocation of impacts derived from the production of fishmeal. Co-products are present when the shellfish is processed, e.g., in canned products. Furthermore, shellfish studies do not take into account the positive credits from the removal of nutrients from the ecosystems and from the valorization of the shellfish waste (shell and organic remains). Limited information was found for countries outside Europe and species different from mussels. Despite the variability on goals and scopes of the studies, methodological trends were found. The local impacts of the shellfish with the farming area and the impacts on biodiversity have not been included into the studies. Conclusions and recommendations Effort should be made in providing the data associated with the fore-background system within the studies in order to improve transparency and to allow the reproduction of the results. Information regarding the natural condition of the cultivation area should be provided as the shellfish production depends mainly on non-anthropogenic conditions. Application of biodiversity assessment methodologies should be encouraged, despite their limitations.

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 803
Author(s):  
Winnie Gerbens-Leenes ◽  
Markus Berger ◽  
John Anthony Allan

Considering that 4 billion people are living in water-stressed regions and that global water consumption is predicted to increase continuously [...]


2021 ◽  
Vol 13 (6) ◽  
pp. 3436
Author(s):  
Hani A. Abu-Qdais ◽  
Muna A. Abu-Dalo ◽  
Yazan Y. Hajeer

Due to their properties, silver nanoparticles (AgNPs) are widely used in consumer products. The widespread use of these products leads to the release of such nanoparticles into the environment, during manufacturing, use, and disposal stages. Currently there is a high margin of uncertainty about the impacts of nano products on the environment and human health. Therefore, different approaches including life cycle assessment (LCA) are being used to evaluate the environmental and health impacts of these products. In this paper, a comparison between four different AgNP synthesis methods was conducted. In addition, four textile products that contain AgNPs were subjected to comparison using LCA analysis to assess their environmental and public health impacts using SimaPro modeling platform. Study results indicate that using alternative methods (green) to AgNPs synthesis will not necessarily reduce the environmental impacts of the synthesizing process. To the best of our knowledge, this is the first study that has compared and assessed the environmental burdens associated with different nanosilver-based textile products at different disposal scenarios. The synthesis of 1 kg of AgNPs using modified Tollens’ method resulted in 580 kg CO2 eq, while 531 kg CO2 eq resulted from the chemical approach. Furthermore, the manufacturing stage had the highest overall impacts as compared to other processes during the life cycle of the product, while the product utilization and disposal stages had the highest impacts on ecotoxicity. Sensitivity analysis revealed that under the two disposal scenarios of incineration and landfilling, the impacts were sensitive to the amount of AgNPs.


Author(s):  
D. P. Adler ◽  
P. A. Ludewig ◽  
V. Kumar ◽  
J. W. Sutherland

The remanufacturing industry is rapidly becoming a source of economic growth and environmental benefit. In the past, researchers have presented cost and energy savings due to remanufacturing a variety of products, largely based on the results of industry-wide surveys. However, little or no effort has focused on the life cycle assessment of remanufacturing. In fact, no study has performed a life cycle assessment of engine components, comparing the original component manufacture with remanufactured components. In this paper, a comparison of the original manufacture and remanufacture of components from a typical Caterpillar diesel engine is described. The “gate-to-gate” analysis considers components that represent a majority of the engine assembly by weight. The comparison is made in two measures of environmental performance: energy and material usage.


Author(s):  
Rebekah Yang ◽  
Imad L. Al-Qadi ◽  
Hasan Ozer

The use of life-cycle assessment (LCA) to assess the environmental impacts of pavement systems has become more prevalent in recent years. When performing an LCA study, a series of methodological choices must be defined. As these decisions can change from study to study, it is important to understand the significance or insignificance of the methodological choices relevant to pavement LCA. This paper evaluated the sensitivity of five choices commonly made in pavement LCA; cut-off criteria, end-of-life (EOL) allocation, asphalt binder allocation, traffic growth, and type of energy reported. Eight case studies and four environmental indicators, that is, global warming potential, primary energy as fuel, total primary energy, and a unitless single score, were considered in the sensitivity analyses. Varying the cut-off criteria and asphalt binder allocation only had a significant impact on the environmental indicators when the use stage of the life-cycle is excluded and only the materials and construction, maintenance and rehabilitation, and EOL stages are considered. Using different EOL allocations, traffic growths, and types of energy reported had significant effects on the overall life-cycle results. Common methodological choices made in a pavement LCA are expected to have an impact on LCA results and subsequent interpretation, with the magnitude of the impact dependent on the scope of the analysis.


2011 ◽  
Vol 65 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Hristina Stevanovic-Carapina ◽  
Jasna Stepanov ◽  
Dunja Savic ◽  
Andjelka Mihajlov

Health and safety have been the major concerns in waste management. Waste must be managed in a way that minimizes risk to human health. Environmental concerns over the management and disposal of waste can be divided into two major areas: conservation of resources and pollution of the environment. Integrated Waste Management (IWM) systems combine waste streams, waste collection, treatment and disposal methods, with the objective of achieving environmental benefits, economic optimization and societal acceptability. Integrated waste management using Life Cycle Assessment (LCA) attempts to offer the most benign options for waste management. LCA is a compilation and evaluation of the inputs, the outputs and the potential environmental impacts of a product system throughout its life cycle. It can be successfully applied to municipal solid waste management systems to identify the overall environmental burdens and to assess the potential environmental impacts. This paper deals with the LCA of the two waste management options for final disposal of municipal waste, landfilling (landfill without landfill gas collection or leachate collection) and sanitary landfilling (landfill with landfill gas collection and recovery and leachate collection and treatments) analyzed for town Sombor, Serbia. The research is conducted with the use of the Software Package IWM-2. The indicators which are used in the assessment are air and water emissions of toxic compounds. The results indicated that waste disposal practice has a significant effect on the emission of the toxic components and environmental burdens. Sanitary landfilling of municipal solid waste significantly reduces toxic emission and negative influence on the environment.


Sign in / Sign up

Export Citation Format

Share Document